• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Arts & Sciences
  • Chemistry & Earth Sciences
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Arts & Sciences
  • Chemistry & Earth Sciences
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Electrochemical Analysis of Sulfisoxazole Using Glassy Carbon Electrode (GCE) and MWCNTs/Rare Earth Oxide (CeO2 and Yb2O3) Modified-GCE Sensors

    Thumbnail
    View/Open
    molecules-27-02033-with-cover.pdf (5.261Mb)
    Date
    2022-03-21
    Author
    El-Azazy, Marwa
    Ahsan, Insharah
    Bensalah, Nasr
    Metadata
    Show full item record
    Abstract
    In this work, new electrochemical sensors based on the modification of glassy carbon electrode (GCE) with multiwalled carbon nanotubes (MWCNTs)—rare metal oxides (REMO) nanocomposites were fabricated by drop-to-drop method of MWCNTs-REMO dispersion in ethanol. REMO nanoparticles were synthesized by precipitation followed by hydrothermal treatment at 180◦C in absence and presence of Triton™ X-100 surfactant. Cyclic voltammetry (CV) analysis using MWCNTs-CeO2@GCE and MWCNTs-Yb2O3@GCE sensors were used for the analysis of sulfisoxazole (SFX) drug in water samples. The results of CV analysis showed that MWCNTs-REMO@GCE sensors have up to 40-fold higher sensitivity with CeO2 compared to the bare GCE sensor. The estimated values of the limit of detection (LoD) of this electrochemical sensing using MWCNTs-CeO2@GCE and MWCNTs-Yb2O3@GCE electrodes reached 0.4 and 0.7 µM SFX in phosphate buffer pH = 7, respectively. These findings indicate that MWCNTs-REMO@GCE electrodes are potential sensors for analysis of sulfonamide drugs in water and biological samples.
    URI
    https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85127033983&origin=inward
    DOI/handle
    http://dx.doi.org/10.3390/molecules27062033
    http://hdl.handle.net/10576/37120
    Collections
    • Chemistry & Earth Sciences [‎601‎ items ]

    entitlement


    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Video