• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Computer Science & Engineering
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Computer Science & Engineering
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    AI-Enabled Reliable Channel Modeling Architecture for Fog Computing Vehicular Networks

    Thumbnail
    Date
    2020-04-01
    Author
    Sodhro, Ali Hassan
    Sodhro, Gul Hassan
    Guizani, Mohsen
    Pirbhulal, Sandeep
    Boukerche, Azzedine
    Metadata
    Show full item record
    Abstract
    Artificial intelligence (AI)-driven fog computing (FC) and its emerging role in vehicular networks is playing a remarkable role in revolutionizing daily human lives. Fog radio access networks are accommodating billions of Internet of Things devices for real-time interactive applications at high reliability. One of the critical challenges in today's vehicular networks is the lack of standard wireless channel models with better quality of service (QoS) for passengers while enjoying pleasurable travel (i.e., highly visualized videos, images, news, phone calls to friends/relatives). To remedy these issues, this article contributes significantly in four ways. First, we develop a novel AI-based reliable and interference-free mobility management algorithm (RIMMA) for fog computing intra-vehicular networks, because traffic monitoring and driver's safety management are important and basic foundations. The proposed RIMMA in association with FC significantly improves computation, communication, cooperation, and storage space. Furthermore, its self-adaptive, reliable, intelligent, and mobility-aware nature, and sporadic contents are monitored effectively in highly mobile vehicles. Second, we propose a reliable and delay-tolerant wireless channel model with better QoS for passengers. Third, we propose a novel reliable and efficient multi-layer fog driven inter-vehicular framework. Fourth, we optimize QoS in terms of mobility, reliability, and packet loss ratio. Also, the proposed RIMMA is compared to an existing competitive conventional method (i.e., baseline). Experimental results reveal that the proposed RIMMA outperforms the traditional technique for intercity vehicular networks.
    URI
    https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85084469041&origin=inward
    DOI/handle
    http://dx.doi.org/10.1109/MWC.001.1900311
    http://hdl.handle.net/10576/37222
    Collections
    • Computer Science & Engineering [‎2428‎ items ]

    entitlement


    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Video