• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Computer Science & Engineering
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Computer Science & Engineering
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    DAGIoV: A Framework for Vehicle to Vehicle Communication Using Directed Acyclic Graph and Game Theory

    Thumbnail
    Date
    2020-04-01
    Author
    Hassija, Vikas
    Chamola, Vinay
    Han, Guangjie
    Rodrigues, Joel J.P.C.
    Guizani, Mohsen
    Metadata
    Show full item record
    Abstract
    Data sharing and content offloading among vehicles is an imperative part of the Internet of Vehicles (IoV). A peer-to-peer connection among vehicles in a distributed manner is a highly promising solution for fast communication among vehicles. To ensure security and data tracking, existing studies use blockchain as a solution. The Blockchain-enabled Internet of Vehicles (BIoV) requires high computation power for the miners to mine the blocks and let the chain grow. Over and above, the blockchain consensus is probabilistic and the block generated today can be eventually declared as a fork and can be pruned from the chain. This reduces the overall efficiency of the protocol because the correct work done initially is eventually not used if it becomes a fork. To address these challenges, in this paper, we propose a Directed Acyclic Graph enabled IoV (DAGIoV) framework. We make use of a tangle data structure where each node acts as a miner and eventually the network achieves consensus among the nodes. A game-theoretic approach is used to model the interactions between the vehicles providing and consuming offloading services. The proposed model is proven to be highly scalable and well suited for microtransactions or frequent data transfer among the nodes in the vehicular network.
    URI
    https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85079852722&origin=inward
    DOI/handle
    http://dx.doi.org/10.1109/TVT.2020.2968494
    http://hdl.handle.net/10576/37224
    Collections
    • Computer Science & Engineering [‎2428‎ items ]

    entitlement


    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Video