A Characterization Study of Arabic Twitter Data with a Benchmarking for State-of-the-Art Opinion Mining Models
Date
2017Author
Baly, RamyBadaro, Gilbert
El-Khoury, Georges
Moukalled, Rawan
Aoun, Rita
Hajj, Hazem
El-Hajj, Wassim
Habash, Nizar
Shaban, Khaled
...show more authors ...show less authors
Metadata
Show full item recordAbstract
Opinion mining in Arabic is a challenging task given the rich morphology of the language. The task becomes more challenging when it is applied to Twitter data, which contains additional sources of noise, such as the use of unstandardized dialectal variations, the non-conformation to grammatical rules, the use of Arabizi and code-switching, and the use of non-text objects such as images and URLs to express opinion. In this paper, we perform an analytical study to observe how such linguistic phenomena vary across different Arab regions. This study of Arabic Twitter characterization aims at providing better understanding of Arabic Tweets, and fostering advanced research on the topic. Furthermore, we explore the performance of the two schools of machine learning on Arabic Twitter, namely the feature engineering approach and the deep learning approach. We consider models that have achieved state-of-the-art performance for opinion mining in English. Results highlight the advantages of using deep learning-based models, and confirm the importance of using morphological abstractions to address Arabic's complex morphology. 2017 Association for Computational Linguistics
Collections
- Computer Science & Engineering [2402 items ]