• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Computer Science & Engineering
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Computer Science & Engineering
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    A light lexicon-based mobile application for sentiment mining of arabic tweets

    Thumbnail
    Date
    2015
    Author
    Badaro, Gilbert
    Baly, Ramy
    Akel, Rana
    Fayad, Linda
    Khairallah, Jeffrey
    Hajj, Hazem
    El-Hajj, Wassim
    Shaban, Khaled Bashir
    ...show more authors ...show less authors
    Metadata
    Show full item record
    Abstract
    Most advanced mobile applications require server-based and communication. This often causes additional energy consumption on the already energy-limited mobile devices. In this work, we provide to address these limitations on the mobile for Opinion Mining in Arabic. Instead of relying on compute-intensive NLP processing, the method uses an Arabic lexical resource stored on the device. Text is stemmed, and the words are then matched to our own developed ArSenL. ArSenL is the first publicly available large scale Standard Arabic sentiment lexicon (ArSenL) developed using a combination of English SentiWordnet (ESWN), Arabic WordNet, and the Arabic Morphological Analyzer (AraMorph). The scores from the matched stems are then processed through a classifier for determining the polarity. The method was tested on a published set of Arabic tweets, and an average accuracy of 67% was achieved. The developed mobile application is also made publicly available. The application takes as input a topic of interest and retrieves the latest Arabic tweets related to this topic. It then displays the tweets superimposed with colors representing sentiment labels as positive, negative or neutral. The application also provides visual summaries of searched topics and a history showing how the sentiments for a certain topic have been evolving. ACL 2015. All rights reserved.
    DOI/handle
    http://dx.doi.org/10.18653/v1/W15-3203
    http://hdl.handle.net/10576/37485
    Collections
    • Computer Science & Engineering [‎2428‎ items ]

    entitlement


    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Video