عرض بسيط للتسجيلة

المؤلفAl-Absi, Hamada R. H.
المؤلفAbdullah, Azween
المؤلفHassan, Mahamat Issa
المؤلفShaban, Khaled Bashir
تاريخ الإتاحة2022-12-21T10:01:47Z
تاريخ النشر2011
اسم المنشورCommunications in Computer and Information Science
المصدرScopus
معرّف المصادر الموحدhttp://dx.doi.org/10.1007/978-3-642-25453-6_12
معرّف المصادر الموحدhttp://hdl.handle.net/10576/37511
الملخصDisease diagnosis often involves acquiring medical images using devices such as MRI, CT scan, x-ray, or mammograms of patients' organs. Though many medical diagnostic applications have been proposed; finding subtle cancerous cells is still an issue because they are very difficult to be identified. This paper presents an architecture that utilizes a learning algorithm, and uses soft computing to build a medical knowledge base and an inference engine for classifying new images. This system is built on the strength of artificial neural networks, fuzzy logic, and genetic algorithms. These machine intelligence are combined in a complementary approach to overcome the weakness of each other. Moreover, the system also uses Wavelet Transform and Principal Component Analysis for pre-processing and feature to produce features to be used as input to the learning algorithm. 2011 Springer-Verlag.
اللغةen
الموضوعArtificial Neural Networks
Computer Aided Diagnosis
Fuzzy Logic
Genetic Algorithms
Soft Computing
العنوانHybrid intelligent system for disease diagnosis based on artificial neural networks, fuzzy logic, and genetic algorithms
النوعConference Paper
الصفحات128-139
رقم العددPART 2
رقم المجلد252 CCIS
dc.accessType Abstract Only


الملفات في هذه التسجيلة

الملفاتالحجمالصيغةالعرض

لا توجد ملفات لها صلة بهذه التسجيلة.

هذه التسجيلة تظهر في المجموعات التالية

عرض بسيط للتسجيلة