عرض بسيط للتسجيلة

المؤلفBhatia, Neha Kamalraj
المؤلفEl-Hag, Ayman H.
المؤلفShaban, Khaled Bashir
تاريخ الإتاحة2022-12-21T10:01:47Z
تاريخ النشر2020
اسم المنشور2020 IEEE International Conference on Informatics, IoT, and Enabling Technologies, ICIoT 2020
المصدرScopus
معرّف المصادر الموحدhttp://dx.doi.org/10.1109/ICIoT48696.2020.9089647
معرّف المصادر الموحدhttp://hdl.handle.net/10576/37514
الملخصExpensive and widely used power and distribution transformers need to be monitored to ensure the reliability of the power grid. Evaluating the transformer oil different parameters is vital to determine the transformer insulation health conditions. In this paper, both regression and classification models based on machine learning are used to test the correlation between the interfacial tension values (IFT) of the transformer oil with other oil test results, namely, breakdown voltage, acidity, color, dissipation factor and water content. Experimental results with oil samples obtained for 730 units indicate that both acidity and color have the highest correlation with IFT. Nevertheless, other parameters like breakdown voltage and dielectric dissipation factor contributes marginally in increasing the classifier output accuracy when added to the acidity and color. 2020 IEEE.
اللغةen
الناشرInstitute of Electrical and Electronics Engineers Inc.
الموضوعMachine learning
power transformer
transformer oil quality tests
العنوانMachine Learning-based Regression and Classification Models for Oil Assessment of Power Transformers
النوعConference Paper
الصفحات400-403
dc.accessType Abstract Only


الملفات في هذه التسجيلة

الملفاتالحجمالصيغةالعرض

لا توجد ملفات لها صلة بهذه التسجيلة.

هذه التسجيلة تظهر في المجموعات التالية

عرض بسيط للتسجيلة