عرض بسيط للتسجيلة

المؤلفOuyang, Zhenchao
المؤلفNiu, Jianwei
المؤلفLiu, Yu
المؤلفGuizani, Mohsen
تاريخ الإتاحة2022-12-22T07:59:01Z
تاريخ النشر2020-02-01
اسم المنشورIEEE Transactions on Mobile Computing
المعرّفhttp://dx.doi.org/10.1109/TMC.2019.2892451
الاقتباسOuyang, Z., Niu, J., Liu, Y., & Guizani, M. (2019). Deep CNN-based real-time traffic light detector for self-driving vehicles. IEEE transactions on Mobile Computing, 19(2), 300-313.‏
الرقم المعياري الدولي للكتاب15361233
معرّف المصادر الموحدhttps://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85078297703&origin=inward
معرّف المصادر الموحدhttp://hdl.handle.net/10576/37541
الملخصDue to the unavailability of Vehicle-to-Infrastructure (V2I) communication in current transportation systems, Traffic Light Detection (TLD) is still considered an important module in autonomous vehicles and Driver Assistance Systems (DAS). To overcome low flexibility and accuracy of vision-based heuristic algorithms and high power consumption of deep learning-based methods, we propose a lightweight and real-time traffic light detector for the autonomous vehicle platform. Our model consists of a heuristic candidate region selection module to identify all possible traffic lights, and a lightweight Convolution Neural Network (CNN) classifier to classify the results obtained. Offline simulations on the GPU server with the collected dataset and several public datasets show that our model achieves higher average accuracy and less time consumption. By integrating our detector module on NVidia Jetson TX1/TX2, we conduct on-road tests on two full-scale self-driving vehicle platforms (a car and a bus) in normal traffic conditions. Our model can achieve an average detection accuracy of 99.3 percent (mRttld) and 99.7 percent (Rttld) at 10Hz on TX1 and TX2, respectively. The on-road tests also show that our traffic light detection module can achieve <±1.5m errors at stop lines when working with other self-driving modules.
راعي المشروعThis work has been supported by the National Key R&D Program of China (2017YFB1301100), National Natural Science Foundation of China (61572060, 61772060, 61728201), State Key Laboratory of Software Development Environment (SKLSDE-2017ZX-18), and CERNET Innovation Project (NGII20160316, NGII20170315).
اللغةen
الناشرInstitute of Electrical and Electronics Engineers Inc.
الموضوعautonomous vehicle
dataset
deep learning
machine learning
Traffic light detection
العنوانDeep CNN-Based real-time traffic light detector for self-driving vehicles
النوعArticle
الصفحات300-313
رقم العدد2
رقم المجلد19
dc.accessType Abstract Only


الملفات في هذه التسجيلة

الملفاتالحجمالصيغةالعرض

لا توجد ملفات لها صلة بهذه التسجيلة.

هذه التسجيلة تظهر في المجموعات التالية

عرض بسيط للتسجيلة