عرض بسيط للتسجيلة

المؤلفJaved, Abdul Rehman
المؤلفRehman, Saif Ur
المؤلفKhan, Mohib Ullah
المؤلفAlazab, Mamoun
المؤلفKhan, Habib Ullah
تاريخ الإتاحة2022-12-27T10:01:03Z
تاريخ النشر2021-06-30
اسم المنشورACM Transactions on Asian and Low-Resource Language Information Processing
المعرّفhttp://dx.doi.org/10.1145/3460392
الاقتباسJaved, A. R., Rehman, S. U., Khan, M. U., Alazab, M., & Khan, H. U. (2021). Betalogger: Smartphone sensor-based side-channel attack detection and text inference using language modeling and dense multilayer neural network. Transactions on Asian and Low-Resource Language Information Processing, 20(5), 1-17.
الرقم المعياري الدولي للكتاب2375-4699
معرّف المصادر الموحدhttps://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85117611301&origin=inward
معرّف المصادر الموحدhttp://hdl.handle.net/10576/37656
الملخصWith the recent advancement of smartphone technology in the past few years, smartphone usage has increased on a tremendous scale due to its portability and ability to perform many daily life tasks. As a result, smartphones have become one of the most valuable targets for hackers to perform cyberattacks, since the smartphone can contain individuals' sensitive data. Smartphones are embedded with highly accurate sensors. This article proposes BetaLogger, an Android-based application that highlights the issue of leaking smartphone users' privacy using smartphone hardware sensors (accelerometer, magnetometer, and gyroscope). BetaLogger efficiently infers the typed text (long or short) on a smartphone keyboard using Language Modeling and a Dense Multi-layer Neural Network (DMNN). BetaLogger is composed of two major phases: In the first phase, Text Inference Vector is given as input to the DMNN model to predict the target labels comprising the alphabet, and in the second phase, sequence generator module generate the output sequence in the shape of a continuous sentence. The outcomes demonstrate that BetaLogger generates highly accurate short and long sentences, and it effectively enhances the inference rate in comparison with conventional machine learning algorithms and state-of-the-art studies.
اللغةen
الناشرAssociation for Computing Machinery (ACM)
الموضوعcyber security
dense neural network
keylogger
language modeling
Natural language processing (NLP)
side-channel attack
text inference
العنوانBetalogger: Smartphone Sensor-based Side-channel Attack Detection and Text Inference Using Language Modeling and Dense MultiLayer Neural Network
النوعArticle
الصفحات1-17
رقم العدد5
رقم المجلد20
ESSN2375-4702
dc.accessType Open Access


الملفات في هذه التسجيلة

Thumbnail

هذه التسجيلة تظهر في المجموعات التالية

عرض بسيط للتسجيلة