• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Chemical Engineering
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Chemical Engineering
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Highly Active Lanthanum Perovskite Electrocatalysts (LaMnxCo1-xO3 (0 ≤ x ≤ 1)) by Tuning the Mn:Co Ratio for ORR and MOR in Alkaline Medium

    Thumbnail
    View/Open
    Highly Active Lanthanum Perovskite Electrocatalysts (LaMnxCo1-xO3 (0 ≤ x ≤ 1)) by Tuning the Mn Co Ratio for ORR and MOR in Alkaline Medium.pdf (2.865Mb)
    Date
    2023-01-01
    Author
    Shafath, Sadiyah
    Logade, Khulood
    Ashok, Anchu
    Kumar, Anand
    Abu-Reesh, Ibrahim M.
    Metadata
    Show full item record
    Abstract
    Lanthanum-based perovskites (LaMnxCo1-xO3 (0 ≤ x ≤ 1)) were synthesized using a solution combustion synthesis technique with variable ratios of Co and Mn to investigate the surface property and electrocatalytic characteristics (stability and activity of catalyst) for methanol oxidation reaction (MOR), oxygen reduction reaction (ORR), and oxygen evolution reaction (OER) under alkaline medium (KOH). The structural, chemical, and morphological characterizations of the synthesized catalyst were performed by XRD, FTIR, SEM, TEM, and XPS techniques as a function of the Mn:Co elemental ratio. The time–temperature profile during the combustion process was also monitored to study the completion of the combustion reaction and to understand its impact on the structure of the perovskites. SEM/EDX and XPS analysis confirmed the formation of the targeted ratio of Mn and Co on the catalyst. Cyclic voltammetry (CV) and linear sweep voltammetry (LSV) results revealed that all perovskite samples with different Co:Mn ratios were active for ORR, OER, and MOR. The LaMnxCo1-xO3 perovskite with x = 0.4 showed the highest current density compared to the other samples toward all the electrocatalytic reactions under alkaline reaction conditions. Graphical Abstract: [Figure not available: see fulltext.]
    URI
    https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85137760528&origin=inward
    DOI/handle
    http://dx.doi.org/10.1007/s12678-022-00772-0
    http://hdl.handle.net/10576/37694
    Collections
    • Chemical Engineering [‎1199‎ items ]

    entitlement


    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Video