• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Research Units
  • Qatar University Young Scientists Center
  • Research of Qatar University Young Scientists Center
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Research Units
  • Qatar University Young Scientists Center
  • Research of Qatar University Young Scientists Center
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Numerical simulation to optimize the efficiency of HTM-free perovskite solar cells by ETM engineering

    Thumbnail
    View/Open
    Publisher version (You have accessOpen AccessIcon)
    Publisher version (Check access options)
    Check access options
    1-s2.0-S0038092X22008982-main.pdf (5.054Mb)
    Date
    2023-01-15
    Author
    Sumbel, Ijaz
    Raza, Ehsan
    Ahmad, Zubair
    Zubair, Muhammad
    Mehmood, Muhammad Qasim
    Mehmood, Haris
    Massoud, Yehia
    Rehman, M. Muqeet
    ...show more authors ...show less authors
    Metadata
    Show full item record
    Abstract
    Perovskite solar cells based on carbon electrodes (c-PSCs) without a hole transport material (HTM) have gained considerable interest owing to their cost-effective and simplified structure. However, their application is constrained by a combination of low efficiency and the prevalence of electron transport materials (ETMs), e.g., TiO2, which undergo extreme temperatures during their manufacturing processes. TiO2 also has poor optoelectronic properties, such as low conductivity and mobility. Additionally, when exposed to UV light, TiO2 susceptibility to photocatalysis reduces the materials long-term stability. In present study, an HTM-free device based on FTO/TiO2/CH3NH3PbI3/carbon structure is employed and studied using a one-dimensional Solar Cell Capacitance Simulator (SCAPS-1D). Initially, the design is studied while employing inorganic ETMs, including CdZnS, WS2, WO3, ZnO, ZnOS, and ZnSe, by substituting TiO2, and the impact of each ETM on device performance is evaluated. After ETM optimization, various parameters that affect device performance, such as ETM and absorber thicknesses, doping concentrations, charge carriers mobility, and defect densities at ETM/perovskite interface, have been studied. Under optimized parameters, the design having ZnSe as ETM yields the best results with a Voc of 1.25 V, Jsc of 24.77 mA/cm2, FF of 86.29 %, and PCE of 26.76 %. The presented results thus add more promise and confidence to the ongoing quest for carbon-based, HTM-free PSCs.
    URI
    https://www.sciencedirect.com/science/article/pii/S0038092X22008982
    DOI/handle
    http://dx.doi.org/10.1016/j.solener.2022.12.027
    http://hdl.handle.net/10576/38283
    Collections
    • Research of Qatar University Young Scientists Center [‎213‎ items ]

    entitlement


    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Video