• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Civil and Environmental Engineering
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Civil and Environmental Engineering
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Machine learning-based shear capacity prediction and reliability analysis of shear-critical RC beams strengthened with inorganic composites

    Thumbnail
    View/Open
    Publisher version (You have accessOpen AccessIcon)
    Publisher version (Check access options)
    Check access options
    1-s2.0-S2214509522001401-main.pdf (6.935Mb)
    Date
    2022
    Author
    Wakjira, Tadesse Gemeda
    Ebead, Usama
    Alam, M. Shahria
    Metadata
    Show full item record
    Abstract
    The application of inorganic composites has proven to be an effective strengthening technique for shear-critical reinforced concrete (RC) beams. However, accurate prediction of the shear capacity of RC beams strengthened with inorganic composites has been a challenging problem due to its complex failure mechanism and the interaction between the internal and external shear reinforcements. Besides, the predictive capabilities of the existing models are not satisfactory. Thus, this research proposed machine learning (ML) based models for predicting the shear capacity of RC beams strengthened in shear with inorganic composites, for the first time, considering all important variables. The results of the analyses evidenced that the proposed ML models can be successfully used to predict the shear capacity of shear-critical RC beams strengthened with inorganic composites. Among the ML models examined herein, the extreme gradient boosting (xgBoost) model showed the highest prediction capability. The comparison among the predictions of the proposed xgBoost and existing models evidenced that the efficacy of the xgBoost model is superior to the existing models in terms of accuracy, safety, and economic aspects. Finally, reliability analysis is performed to calibrate the resistance reduction factors in order to attain target reliability indices of 3.5 and 4.0 for the proposed model. 2022 The Authors
    DOI/handle
    http://dx.doi.org/10.1016/j.cscm.2022.e01008
    http://hdl.handle.net/10576/39130
    Collections
    • Civil and Environmental Engineering [‎862‎ items ]

    entitlement


    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Video