Short-term flexural performance of seawater-mixed recycled-aggregate GFRP-reinforced concrete beams
View/ Open
Publisher version (Check access options)
Check access options
Date
2020Metadata
Show full item recordAbstract
Combining seawater, recycled coarse aggregate (RCA), and glass fiber reinforced polymer (GFRP) reinforcement in concrete is potentially advantageous from a sustainability perspective. This paper reports on the results of an experimental study on the short-term flexural performance of seawater-mixed recycled-aggregate concrete beams with GFRP bars. Twelve medium-scale reinforced concrete (RC) beams (150x260x2200 mm) were tested under four-point loading. The test variables included the mixing water (seawater/freshwater), aggregate type (conventional/recycled), and reinforcement material (black steel/GFRP). A wide range of flexural properties, including failure mode, cracking behavior, load-carrying capacity, deformation, energy absorption, and ductility were characterized and compared among the beam specimens. The results suggest that the use of seawater and RCA in concrete has insignificant effects on the flexural capacity of RC beams, especially if concrete strength is preserved by adjusting the mixture design. Altering reinforcement material had a strong influence on the flexural capacity and performance of the tested specimens: the GFRP-RC beams exhibited higher load-carrying capacities (on average 25%) but inferior deformational characteristics as compared to their steel-reinforced counterparts. Theoretical predictions were obtained for the flexural capacity, crack width, and deflection of steel- and GFRP-RC beams based on their corresponding design guides, and compared with the experimental results. 2020 Elsevier Ltd
Collections
- Civil and Environmental Engineering [851 items ]
Related items
Showing items related by title, author, creator and subject.
-
Assessment of microstructural and mechanical properties of hybrid fibrous self-consolidating concretes using ingredients of plastic wastes
G., Ozerkan N.; G., Tokgoz D.D.; S., Kowita O.; J., Antony S. ( Technoscience Publications , 2016 , Article)This paper focuses on the experimental investigation carried out on self-consolidating concrete (SCC) reinforced with micro-steel fibre and hybrid fibres (combination of micro-steel fibre and recycled high density polyethylene ... -
Effect of self-healing calcium nitrate microcapsules on concrete properties
Milla, Jose; Hassan, Marwa M.; Rupnow, Tyson; Al-Ansari, Mohamed; Arce, Gabriel ( National Research Council , 2016 , Article)Self-healing concrete with microencapsulated calcium nitrate was investigated. The compressive strength of concrete admixed with microcapsules (as a percentage of the weight of the cement) was tested and compared with that ... -
Effects of Using Seawater and Recycled Coarse Aggregates on Plain Concrete Characteristics
Younis, Adel; Ebead, Usama ( Qatar Univesrity Press , 2020 , Conference Paper)Using seawater and/or recycled coarse aggregates (RCA) for concrete mixing is deemed advantageous from a sustainability perspective. This paper reports on the results of an experimental study on fresh and hardened properties ...