• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Research Units
  • KINDI Center for Computing Research
  • Information Intelligence
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Research Units
  • KINDI Center for Computing Research
  • Information Intelligence
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    An iterative cyclic tri-strategy hybrid stochastic fractal with adaptive differential algorithm for global numerical optimization

    Thumbnail
    View/Open
    Publisher version (You have accessOpen AccessIcon)
    Publisher version (Check access options)
    Check access options
    Date
    2023-05-01
    Author
    Abdel-Nabi, Heba
    Ali, Mostafa Z.
    Awajan, Arafat
    Alazrai, Rami
    Daoud, Mohammad I.
    Suganthan, Ponnuthurai N.
    ...show more authors ...show less authors
    Metadata
    Show full item record
    Abstract
    Many real-life problems can be formulated as numerical optimization problems. Such problems pose a challenge for researchers when designing efficient techniques that are capable of finding the desired solution without suffering from premature convergence. This paper proposes a novel evolutionary algorithm that blends the exploitative and explorative merits of two main evolutionary algorithms, namely the Stochastic Fractal Search (SFS) and a Differential Evolution (DE) variant. This amalgam has an effective interaction and cooperation of an ensemble of diverse strategies to derive a single framework called Iterative Cyclic Tri-strategy with adaptive Differential Stochastic Fractal Evolutionary Algorithm (Ic3-aDSF-EA). The component algorithms cooperate and compete to enhance the quality of the generated solutions and complement each other. The iterative cycles in the proposed algorithm consist of three consecutive phases. The main idea behind the cyclic nature of Ic3-aDSF-EA is to gradually emphasize the work of the best-performing algorithm without ignoring the effects of the other inferior algorithm during the search process. The cooperation of component algorithms takes place at the end of each cycle for information sharing and the quality of solutions for the next cycle. The algorithm's performance is evaluated on 43 problems from three different benchmark suites. The paper also investigates the application to a set of real-life problems. The overall results show that the proposed Ic3-aDSF-EA has a propitious performance and a reliable scalability behavior compared to other state-of-the-art algorithms.
    URI
    https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85147090338&origin=inward
    DOI/handle
    http://dx.doi.org/10.1016/j.ins.2023.01.065
    http://hdl.handle.net/10576/39731
    Collections
    • Information Intelligence [‎98‎ items ]

    entitlement


    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Video