Dynamic ensemble deep echo state network for significant wave height forecasting
| المؤلف | Gao, Ruobin |
| المؤلف | Li, Ruilin |
| المؤلف | Hu, Minghui |
| المؤلف | Suganthan, Ponnuthurai Nagaratnam |
| المؤلف | Yuen, Kum Fai |
| تاريخ الإتاحة | 2023-02-08T07:52:15Z |
| تاريخ النشر | 2023-01-01 |
| اسم المنشور | Applied Energy |
| المعرّف | http://dx.doi.org/10.1016/j.apenergy.2022.120261 |
| الاقتباس | Gao, R., Li, R., Hu, M., Suganthan, P. N., & Yuen, K. F. (2023). Dynamic ensemble deep echo state network for significant wave height forecasting. Applied Energy, 329, 120261. |
| الرقم المعياري الدولي للكتاب | 03062619 |
| الملخص | Forecasts of the wave heights can assist in the data-driven control of wave energy systems. However, the dynamic properties and extreme fluctuations of the historical observations pose challenges to the construction of forecasting models. This paper proposes a novel dynamic ensemble deep Echo state networks (ESN) to learn the dynamic characteristics of the significant wave height. The dynamic ensemble ESN creates a profound representation of the input and trains an independent readout module for each reservoir. To begin, numerous reservoir layers are built in a hierarchical order, adopting a reservoir pruning approach to filter out the poorer representations. Finally, a dynamic ensemble block is used to integrate the forecasts of all readout layers. The suggested model has been tested on twelve available datasets and statistically outperforms state-of-the-art approaches. |
| اللغة | en |
| الناشر | Elsevier Ltd |
| الموضوع | Deep learning Echo state network Forecasting Machine learning Randomized neural networks |
| النوع | Article |
| رقم المجلد | 329 |
تحقق من خيارات الوصول
الملفات في هذه التسجيلة
| الملفات | الحجم | الصيغة | العرض |
|---|---|---|---|
|
لا توجد ملفات لها صلة بهذه التسجيلة. |
|||
هذه التسجيلة تظهر في المجموعات التالية
-
الشبكات وخدمات البنية التحتية للمعلومات والبيانات [143 items ]

