Malicious uav detection using integrated audio and visual features for public safety applications
Date
2020Author
Jamil, SonainFawad
Rahman, MuhibUr
Ullah, Amin
Badnava, Salman
Forsat, Masoud
Mirjavadi, Seyed S.
...show more authors ...show less authors
Metadata
Show full item recordAbstract
Unmanned aerial vehicles (UAVs) have become popular in surveillance, security, and remote monitoring. However, they also pose serious security threats to public privacy. The timely detection of a malicious drone is currently an open research issue for security provisioning companies. Recently, the problem has been addressed by a plethora of schemes. However, each plan has a limitation, such as extreme weather conditions and huge dataset requirements. In this paper, we propose a novel framework consisting of the hybrid handcrafted and deep feature to detect and localize malicious drones from their sound and image information. The respective datasets include sounds and occluded images of birds, airplanes, and thunderstorms, with variations in resolution and illumination. Various kernels of the support vector machine (SVM) are applied to classify the features. Experimental results validate the improved performance of the proposed scheme compared to other related methods.
Collections
- Computer Science & Engineering [2402 items ]
- Mechanical & Industrial Engineering [1371 items ]