• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Research Units
  • KINDI Center for Computing Research
  • Network & Distributed Systems
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Research Units
  • KINDI Center for Computing Research
  • Network & Distributed Systems
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Random vector functional link neural network based ensemble deep learning for short-term load forecasting

    Thumbnail
    View/Open
    Publisher version (You have accessOpen AccessIcon)
    Publisher version (Check access options)
    Check access options
    Random vector functional link neural network based ensemble deep learning for short-term load forecasting.pdf (1.160Mb)
    Date
    2022-11-15
    Author
    Gao, Ruobin
    Du, Liang
    Suganthan, Ponnuthurai Nagaratnam
    Zhou, Qin
    Yuen, Kum Fai
    Metadata
    Show full item record
    Abstract
    Electric load forecasting is essential for the planning and maintenance of power systems. However, its un-stationary and non-linear properties impose significant difficulties in predicting future demand. This paper proposes a novel ensemble deep Random Vector Functional Link (edRVFL) network for electricity load forecasting. The weights of hidden layers are randomly initialized and fixed during the training process. The hidden layers are stacked to enforce deep representation learning. Then, the model generates the forecasts using the ensemble of the outputs of each layer. Moreover, we also propose to augment the random enhancement features by empirical wavelet transformation (EWT). The raw load data are decomposed by EWT in a walk-forward approach without introducing future data leakage problems in the decomposition process. Finally, all the sub-series generated by the EWT, including raw data, are fed into the edRVFL for forecasting purposes. The proposed model is evaluated on sixteen publicly available time series from the Australian Energy Market Operator of the year 2020. The simulation results demonstrate the proposed model's superior performance over eleven forecasting methods in two error metrics and statistical tests on electricity load forecasting tasks.
    URI
    https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85133160892&origin=inward
    DOI/handle
    http://dx.doi.org/10.1016/j.eswa.2022.117784
    http://hdl.handle.net/10576/39962
    Collections
    • Network & Distributed Systems [‎142‎ items ]

    entitlement


    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Video