• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Research Units
  • KINDI Center for Computing Research
  • Network & Distributed Systems
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Research Units
  • KINDI Center for Computing Research
  • Network & Distributed Systems
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    EEG-based emotion recognition using random Convolutional Neural Networks

    Thumbnail
    View/Open
    Publisher version (You have accessOpen AccessIcon)
    Publisher version (Check access options)
    Check access options
    Date
    2022-11-01
    Author
    Cheng, Wen Xin
    Gao, Ruobin
    Suganthan, P. N.
    Yuen, Kum Fai
    Metadata
    Show full item record
    Abstract
    Emotion recognition based on electroencephalogram (EEG) signals is helpful in various fields, including medical healthcare. One possible medical application is to diagnose emotional disorders in patients. Humans tend to work and communicate efficiently when in a good mood. On the other hand, negative emotions can harm physical and mental health. Traditional EEG-based methods usually extract time-domain and frequency-domain features before classifying them. Convolutional Neural Networks (CNN) enables us to extract features and classify them end-to-end. However, most CNN methods use backpropagation to train their models, which can be computationally expensive, primarily when a complex model is used. Inspired by the successes of Random Vector Functional Link and Convolutional Random Vector Functional Link, we propose using a randomized CNN model for emotion recognition that removes the need for a backpropagation method. Also, we expand our randomized CNN method to a deep and ensemble version to improve emotion recognition performance. We do experiments on the commonly used publicly available Database for Emotion Analysis using the Physiological Signals (DEAP) dataset to evaluate our randomized CNN models. Results on the DEAP dataset show our models outperform all other models, with at least 95% accuracy for all subjects. Our ensemble version outperforms our shallow version, winning the shallow version in most subjects.
    URI
    https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85137166921&origin=inward
    DOI/handle
    http://dx.doi.org/10.1016/j.engappai.2022.105349
    http://hdl.handle.net/10576/39973
    Collections
    • Network & Distributed Systems [‎142‎ items ]

    entitlement


    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Video