• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Research Units
  • KINDI Center for Computing Research
  • Network & Distributed Systems
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Research Units
  • KINDI Center for Computing Research
  • Network & Distributed Systems
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Situation Awareness Recognition Using EEG and Eye-Tracking data: a pilot study

    Thumbnail
    Date
    2022-01-01
    Author
    Li, Ruilin
    Cui, Jian
    Gao, Ruobin
    Suganthan, P. N.
    Sourina, Olga
    Wang, Lipo
    Chen, Chun Hsien
    ...show more authors ...show less authors
    Metadata
    Show full item record
    Abstract
    Since situation awareness (SA) plays an important role in many fields, the measure of SA is one of the most concerning problems. Using physiological signals to evaluate SA is becoming a popular research topic because of their advantages of non-intrusiveness and objectivity. However, previous studies mainly exploited the use of single physiological signals such as electroencephalogram (EEG) or eye tracking. The multi-modal SA recognition is still a research gap. Therefore, this work conducts a pilot study to investigate SA recognition by using two modalities: EEG and eye tracking data. Specifically, an optimized Stroop test that is more compatible with the definition of SA was used to induce different states of SA and collect physiological data. Furthermore, a random vector functional link-based stacking (RVFL-S) model was proposed to perform the multi-modal SA recognition. Experiment results showed that using the combination of EEG and eye tracking data can boost the performance of SA recognition. Moreover, the proposed RVFL-S model can effectively integrate the classification information from two modalities. It showed better performance than baseline methods, achieving 77.62% leave-one-subject-out (LOSO) average accuracy. This was around 5% improvement compared with the baseline classification models with input of only one modality. This pilot study demonstrated that the use of multi-modality is a potential strategy for SA recognition.
    URI
    https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85142413363&origin=inward
    DOI/handle
    http://dx.doi.org/10.1109/CW55638.2022.00049
    http://hdl.handle.net/10576/40063
    Collections
    • Network & Distributed Systems [‎142‎ items ]

    entitlement


    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Video