عرض بسيط للتسجيلة

المؤلفHu, Minghui
المؤلفGao, Ruobin
المؤلفSuganthan, P. N.
تاريخ الإتاحة2023-02-15T08:11:02Z
تاريخ النشر2022-01-01
اسم المنشورProceedings of the International Joint Conference on Neural Networks
المعرّفhttp://dx.doi.org/10.1109/IJCNN55064.2022.9892228
الاقتباسHu, M., Gao, R., & Suganthan, P. N. (2022, July). Deep Reservoir Computing Based Random Vector Functional Link for Non-sequential Classification. In 2022 International Joint Conference on Neural Networks (IJCNN) (pp. 1-8). IEEE.‏
الترقيم الدولي الموحد للكتاب 9781728186719
معرّف المصادر الموحدhttps://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85140787564&origin=inward
معرّف المصادر الموحدhttp://hdl.handle.net/10576/40064
الملخصReservoir Computing (RC) is well-suited for simpler sequential tasks which require inexpensive, rapid training, and the Echo State Network (ESN) plays a significant role in RC. In this article, we proposed variations of the Random Vector Functional Link (RVFL) network based on reservoir computing for non-sequential tasks. To commence, we present a plain echo state-based RVFL (esRVFL) that is distinguished from randomly generated input weights by the fact that esRVFL generates sparse matrices randomly to complete the initialization of the neuron weights. Following that, we extended it to a deep structure and introduced several network topologies. We also follow esRVFL and replace the single layer of echo state with a multi-layer stacked echo state network, where the entire network only needs to compute a set of output weights, which is called deep esRVFL (desRVFL). We evaluated our method on several public datasets and compared it with related methods. Experiments have shown that the proposed method can handle the classification tasks for tabular data and outperform some state-of-the-art randomized neural networks.
اللغةen
الناشرInstitute of Electrical and Electronics Engineers Inc.
الموضوعEcho State Network
Random Vector Functional Link
Reservoir Computing
العنوانDeep Reservoir Computing Based Random Vector Functional Link for Non-sequential Classification
النوعConference
رقم المجلد2022-July
dc.accessType Abstract Only


الملفات في هذه التسجيلة

الملفاتالحجمالصيغةالعرض

لا توجد ملفات لها صلة بهذه التسجيلة.

هذه التسجيلة تظهر في المجموعات التالية

عرض بسيط للتسجيلة