• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Student Thesis & Dissertations
  • College of Arts & Sciences
  • Mathematics, Statistics & Physics
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Student Thesis & Dissertations
  • College of Arts & Sciences
  • Mathematics, Statistics & Physics
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    IMPLEMENTATION OF MACHINE LEARNING ALGORITHMS FOR CLASSIFICATION OF BONE MINERAL DENSITY TYPES BASED ON QATAR BIOBANK DATA

    Thumbnail
    View/Open
    Mohammed Ahmed_OGS Approved Thesis.pdf (1.889Mb)
    Date
    2023-01
    Author
    AHMED, MOHAMMED
    Metadata
    Show full item record
    Abstract
    Bone Mineral Density (BMD) test measures the amount of calcium and other minerals in specific areas of bone. Low BMD is a well-known problem and results in bone fractures in millions of people around the world. BMD can be affected by demographic factors (such as age, gender, etc.) and clinical features (such as Vitamin D level, Calcium, etc.). A large population is known to have issues related to bones due to low vitamin D levels. BMD can be generally classified into normal and low (Osteopenia) by using the BMD t-scores. It is of interest to know which factors can affect BMD and help in classification of BMD types. We applied machine learning techniques to classify BMD levels into "Normal" or "low" using Qatar Biobank dataset. The aim is to highlight the most important variables in classifying BMD levels, and to identify which machine learning algorithm has the ability to accurately and precisely classify BMD levels. Results showed that Random Forest (RF) was the best performing algorithm followed by Gradient Boosting. While the most important variables are "BMI", "Testosterone", "Hip-Waist ratio", "Uric Acid", "eGFR", "Ferritin", "Gender" and "Age". Research showed that we could rely on machine learning algorithms for early diagnosis of low BMD issues, which will spare time and cost
    DOI/handle
    http://hdl.handle.net/10576/41069
    Collections
    • Mathematics, Statistics & Physics [‎35‎ items ]

    entitlement


    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Video