• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Research Units
  • Center for Advanced Materials
  • Center for Advanced Materials Research
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Research Units
  • Center for Advanced Materials
  • Center for Advanced Materials Research
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Tailoring electrocatalytic properties of Pt nanoparticles grown on Ti3C2Tx MXene surface

    Thumbnail
    View/Open
    Filip_2019_J._Electrochem._Soc._166_H54.pdf (877.8Kb)
    Date
    2019-01-28
    Author
    Filip, Jaroslav
    Zavahir, Sifani
    Lorencova, Lenka
    Bertok, Tomas
    Yousaf, Ammar Bin
    Mahmoud, Khaled A.
    Tkac, Jan
    Kasak, Peter
    ...show more authors ...show less authors
    Metadata
    Show full item record
    Abstract
    In this work, the spontaneous and NaBH4-induced reduction of chloroplatinic acid on the surface of Ti3C2TX MXene was investigated to synthesize a hybrid PtNP-decorated MXene nanomaterial (MX-Pt) with potential as hydrogen evolution (HER) or oxygen reduction reaction (ORR) catalyst properties. The initial Pt concentration, reduction time and presence of additional reducing agents were varied, and as-synthesized nanocomposites were characterized thoroughly by XRD, EDX, SEM and XPS analysis and by electrochemical methods. Composites containing 14 wt% Pt showed HER with an onset potential of −75.9 mV and a current density of −10 mA cm−2 achieved at −226 mV. The spontaneous deposition of PtNPs on MXene improved the electrocatalytic properties over using an external reducing agent to form PtNP, which was explained based on the different rates of oxidation of Ti in the initial MXene support. Furthermore, good stability of the electrode modified by the MX-Pt was achieved without any polymeric binder and the HER reaction achieved only a negligible decrease over 3 000 potentiodynamic cycles.
    URI
    https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85066494719&origin=inward
    DOI/handle
    http://dx.doi.org/10.1149/2.0991902jes
    http://hdl.handle.net/10576/41674
    Collections
    • Center for Advanced Materials Research [‎1482‎ items ]

    entitlement


    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Video