• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Research Units
  • Center for Advanced Materials
  • Center for Advanced Materials Research
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Research Units
  • Center for Advanced Materials
  • Center for Advanced Materials Research
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Synergistic effect of Co-Ni co-bridging with MoS2nanosheets for enhanced electrocatalytic hydrogen evolution reactions

    Thumbnail
    View/Open
    c7ra12692a.pdf (1.317Mb)
    Date
    2018
    Author
    Yousaf, Ammar Bin
    Imran, Muhammad
    Farooq, Muhammad
    Kasak, Peter
    Metadata
    Show full item record
    Abstract
    The depletion of fossil fuels and associated environmental problems have drawn our attention to renewable energy resources in order to meet the global energy demand. Electrocatalytic hydrogen evolution has been considered a potential energy solution due of its high energy density and environment friendly technology. Herein, we have successfully synthesized a noble-metal-free Co-Ni/MoS2 nanocomposite for enhanced electrocatalytic hydrogen evolution. The nanocomposite has been well characterized using HRTEM, elemental mapping, XRD, and XPS analysis. The as-synthesized nanocomposite exhibits a much smaller onset potential and better current density than those of Co-MoS2, Ni-MoS2 and MoS2, with a Tafel value of 49 mV dec-1, which is comparable to that of a commercial Pt/C catalyst. The synergistic effect and interfacial interaction of Co-Ni bimetallic nanoparticles enhances the intrinsic modulation in the electronic structure resulting in an improved HER performance. Moreover, the electrochemical impedance spectroscopic results suggest smaller resistance values for the Co-Ni/MoS2 nanocomposite, compared to those for the charge transfer of bare nanosheets, which increase the faradaic process and in turn enhance the HER kinetics for a better performance. Our as-synthesized Co-Ni/MoS2 nanocomposite holds great potential for the future synthesis of noble-metal-free catalysts.
    URI
    https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85041102000&origin=inward
    DOI/handle
    http://dx.doi.org/10.1039/c7ra12692a
    http://hdl.handle.net/10576/41677
    Collections
    • Center for Advanced Materials Research [‎1482‎ items ]

    entitlement


    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Video