• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Research Units
  • Center for Advanced Materials
  • Center for Advanced Materials Research
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Research Units
  • Center for Advanced Materials
  • Center for Advanced Materials Research
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Enhanced Electrocatalytic Performance of Pt3Pd1 Alloys Supported on CeO2/C for Methanol Oxidation and Oxygen Reduction Reactions

    Thumbnail
    Date
    2017-01-19
    Author
    Yousaf, Ammar Bin
    Imran, M.
    Uwitonze, Nestor
    Zeb, Akif
    Zaidi, Syed Javaid
    Ansari, Tariq Mahmood
    Yasmeen, Ghazala
    Manzoor, Suryyia
    ...show more authors ...show less authors
    Metadata
    Show full item record
    Abstract
    Direct methanol fuel cell (DMFC) with noble metals based anode and cathode is a promising energy generator to portable power devices. However, the deterioration of catalyst performance suffered by CO poisoning, crossover of fuel from anode to cathode, and higher economical cost of such devices hinder their commercialization. Herein, all of the above issues have been neutralized and crossed the huge hump of faced challenges. Highly efficient, durable, and surfactant-free catalyst with ultralow Pt3Pd1 loadings supported on CeO2/C was synthesized. The ex-situ and in situ spectroelectrochemical techniques such as, CV, in situ FTIR, and online DEMS studies confirm the highly efficient activity of catalyst toward electro-oxidation of methanol. In addition, the critical and detailed analysis of RDE results prove the superiority of the present material for electro-reduction of oxygen along a cathode side. The as-synthesized catalyst has proven itself as a better substitute for commercial Pt/C catalyst, with enhanced and durable performance as anode and cathode material for DMFCs. The obtained remarkable performance of catalysts can be attributed to the accumulative effects of PtPd bimetallic NPs and the enhanced synergistic factors of CeO2 in a hybrid material. (Graph Presented).
    URI
    https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85012283689&origin=inward
    DOI/handle
    http://dx.doi.org/10.1021/acs.jpcc.6b11528
    http://hdl.handle.net/10576/41678
    Collections
    • Center for Advanced Materials Research [‎1482‎ items ]

    entitlement


    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Video