• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Computer Science & Engineering
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Computer Science & Engineering
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Investigating low-delay deep learning-based cultural image reconstruction

    Thumbnail
    Date
    2020
    Author
    Belhi, Abdelhak
    Al-Ali, Abdulaziz Khalid
    Bouras, Abdelaziz
    Foufou, Sebti
    Yu, Xi
    Zhang, Haiqing
    ...show more authors ...show less authors
    Metadata
    Show full item record
    Abstract
    Numerous cultural assets host a great historical and moral value, but due to their degradation, this value is heavily affected as their attractiveness is lost. One of the solutions that most heritage organizations and museums currently choose is to leverage the knowledge of art and history experts in addition to curators to recover and restore the damaged assets. This process is labor-intensive, expensive and more often results in just an assumption over the damaged or missing region. In this work, we tackle the issue of completing missing regions in artwork through advanced deep learning and image reconstruction (inpainting) techniques. Following our analysis of different image completion and reconstruction approaches, we noticed that these methods suffer from various limitations such as lengthy processing times and hard generalization when trained with multiple visual contexts. Most of the existing learning-based image completion and reconstruction techniques are trained on large datasets with the objective of retrieving the original data distribution of the training samples. However, this distribution becomes more complex when the training data is diverse making the training process difficult and the reconstruction inefficient. Through this paper, we present a clustering-based low-delay image completion and reconstruction approach which combines supervised and unsupervised learning to address the highlighted issues. We compare our technique to the current state of the art using a real-world dataset of artwork collected from various cultural institutions. Our approach is evaluated using statistical methods and a surveyed audience to better interpret our results objectively and subjectively. 2020, Springer-Verlag GmbH Germany, part of Springer Nature.
    DOI/handle
    http://dx.doi.org/10.1007/s11554-020-00975-y
    http://hdl.handle.net/10576/41715
    Collections
    • Computer Science & Engineering [‎2429‎ items ]

    entitlement


    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Video