• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Computer Science & Engineering
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Computer Science & Engineering
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Hybrid Missing Value Imputation Algorithms Using Fuzzy C-Means and Vaguely Quantified Rough Set

    Thumbnail
    Date
    2022
    Author
    Li, Daiwei
    Zhang, Haiqing
    Li, Tianrui
    Bouras, Abdelaziz
    Yu, Xi
    Wang, Tao
    ...show more authors ...show less authors
    Metadata
    Show full item record
    Abstract
    In real cases, missing values tend to contain meaningful information that should be acquired or should be analyzed before the incomplete dataset is used for machine learning tasks. In this work, two algorithms named jointly fuzzy C-Means and vaguely quantified nearest neighbor (VQNN) imputation (JFCM-VQNNI) and jointly fuzzy C-Means and fitted VQNN imputation (JFCM-FVQNNI) have been proposed by considering clustering conception and sufficient extraction of uncertain information. In the proposed JFCM-VQNNI and JFCM-FVQNNI algorithm, the missing value is regarded as a decision feature, and then, the prediction is generated for the objects that contain at least one missing value. Specially, as for JFCM-VQNNI algorithm, indistinguishable matrixes, tolerance relations, and fuzzy membership relations are adopted to identify the potential closest filled values based on corresponding similar objects and related clusters. On the basis of JFCM-VQNNI algorithm, JFCM-FVQNNI algorithm synthetic analyzes the fuzzy membership of the dependent features for instances with each cluster. In order to fill the missing values more accurately, JFCM-FVQNNI algorithm performs fuzzy decision membership adjustment in each object with respect to the related clusters by considering highly relevant decision attributes. The experiments have been carried out on five datasets. Based on the analysis of root-mean-square error, mean absolute error, comparison of imputation values with actual values, and classification accuracy results analysis, we can draw the conclusion that the proposed JFCM-FVQNNI and JFCM-VQNNI algorithms yields sufficient and reasonable imputation performance results by comparing with fuzzy C-Means parameter-based imputation algorithm and fuzzy C-Means rough parameter-based imputation algorithm. 2022 IEEE.
    DOI/handle
    http://dx.doi.org/10.1109/TFUZZ.2021.3058643
    http://hdl.handle.net/10576/41743
    Collections
    • Computer Science & Engineering [‎2429‎ items ]

    entitlement


    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Video