• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Electrical Engineering
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Electrical Engineering
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Fiber Bragg Gratings based smart insole to measure plantar pressure and temperature

    Thumbnail
    View/Open
    Publisher version (You have accessOpen AccessIcon)
    Publisher version (Check access options)
    Check access options
    Date
    2023
    Author
    Mahmud, Sakib
    Khandakar, Amith
    Chowdhury, Muhammad E.H.
    AbdulMoniem, Mohammed
    Bin Ibne Reaz, Mamun
    Bin Mahbub, Zaid
    Sadasivuni, Kishor Kumar
    Murugappan, M.
    Alhatou, Mohammed
    ...show more authors ...show less authors
    Metadata
    Show full item record
    Abstract
    Various foot complications can be easily avoided by continuously monitoring plantar (foot sole) pressure and temperature at home. Systems which can simultaneously measure plantar pressure and temperature in real time are still scarce. In this work, the design, characterization, and implementation of a Fiber Bragg Gratings (FBG) based smart insole capable of simultaneously measuring plantar pressure and temperature has been reported. The instrumented insole was tested and verified during static and gait exercises. The paper also provides a comparison of the developed optoelectronic-based solution with a commercially available and widely used plantar pressure measurement and analysis system, and a lab-made electronic sensor-based solution for simultaneously recording plantar pressure and temperature. It was shown that even though the commercial plantar pressure acquisition system is very robust and highly precise due to many sensing units on the insole, the developed insole with a much smaller number of sensors can simultaneously acquire both plantar temperature and pressure with reasonable precision while displaying both foot pressure and temperature maps, and gait cycle plots in real-time with a development cost more than eight times lower than the manufacturing cost of the commercial solution. Our proposed optoelectronic-based solution is lightweight, uncomplicated but robust, and electronically safer than the commercial system. While the proposed system is far from its optimized form, we expect that our developed prototype will instigate other researchers in this domain to further explore optoelectronic-based solutions in real-time plantar pressure and temperature monitoring. 2022 Elsevier B.V.
    DOI/handle
    http://dx.doi.org/10.1016/j.sna.2022.114092
    http://hdl.handle.net/10576/41928
    Collections
    • Center for Advanced Materials Research [‎1482‎ items ]
    • Electrical Engineering [‎2821‎ items ]

    entitlement


    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Video