• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Research Units
  • Agricultural Research Station
  • Research of Agricultural Research Station
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Research Units
  • Agricultural Research Station
  • Research of Agricultural Research Station
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    5-Aminolevulinic acid mitigates the chromium-induced changes in Helianthus annuus L. as revealed by plant defense system enhancement

    Thumbnail
    View/Open
    Publisher version (You have accessOpen AccessIcon)
    Publisher version (Check access options)
    Check access options
    5-ALA and Cr tolerance in sunflowers.pdf (13.01Mb)
    Date
    2023-05-01
    Author
    Xu, Zishu
    Pan, Jianmin
    Ullah, Najeeb
    Duan, Yi
    Hao, Ruiyong
    Li, Juanjuan
    Huang, Qian
    Xu, Ling
    ...show more authors ...show less authors
    Metadata
    Show full item record
    Abstract
    Chromium (Cr) in the soil is one of the major pollutants for agricultural production. This study examined the efficiency of sunflower plants to remediate Cr-contaminated soils using a plant growth regulator, 5-aminolevolinic acid (ALA). At six leaf stage, sunflower plants were exposed to soil-applied Cr (0.15 g kg−1), manganese (Mn, 0.3 g kg−1) and trisodium (S,S)-ethylenediamine-N,N′-disuccinic acid (EDDS, 2.5 mmol kg−1), ALA (10 mg L−1) was sprayed. After ALA treatment, the plants were harvested for further biochemical analyses. Results showed that EDDS and Mn improved the Cr accumulation but restrained plant growth. Conversely, ALA improved the growth of Cr-stressed plants by promoting chlorophyll concentration in the top fully expanded leaves. The bioaccumulation quantity and removal efficiency of sunflowers treated by Cr + EDDS + ALA was improved by 47.92% and 47.94%, respectively, as compared to the Cr treatment. This was further supported by qRT-PCR analysis, where the expression of heavy metal transport genes such as ZIP6 and NRAMP6 and subsequently Cr accumulation in sunflower tissues increased by EDDS, Mn, and ALA application. However, compared with other treatments, ALA ameliorated cellular injury from Cr-stress by uptake or movement of Cr prevention, modulation of antioxidant enzymes, and elimination of reactive oxygen species. Our study suggested that ALA as an ideal option for the phytoremediation of Cr-contaminated soils.
    URI
    https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85153317547&origin=inward
    DOI/handle
    http://dx.doi.org/10.1016/j.plaphy.2023.107701
    http://hdl.handle.net/10576/42531
    Collections
    • Research of Agricultural Research Station [‎62‎ items ]

    entitlement


    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Video