• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Research Units
  • Gas Processing Center
  • GPC Research
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Research Units
  • Gas Processing Center
  • GPC Research
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Electrochemical reduction of CO2 into formate/formic acid: A review of cell design and operation

    Thumbnail
    View/Open
    Publisher version (You have accessOpen AccessIcon)
    Publisher version (Check access options)
    Check access options
    1-s2.0-S1383586623007190-main.pdf (10.16Mb)
    Date
    2023
    Author
    Ewis, Dina
    Arsalan, Muhammad
    Khaled, Mazen
    Pant, Deepak
    Ba-Abbad, Muneer M.
    Amhamed, Abdulkarem
    El-Naas, Muftah H.
    ...show more authors ...show less authors
    Metadata
    Show full item record
    Abstract
    The release of carbon dioxide (CO2) into the atmosphere is threatening the environment and ecosystems, resulting in major challenges to sustainable development for modern industry. In this context, CO2 electrochemical reduction (CO2 ECR) is one of the most promising technologies to mitigate the effects of high CO2 content in the atmosphere. Electrochemical technology can convert CO2 into value-added chemicals including methanol, ethanol and formate. In this review, different mechanisms of CO2 electrochemical reduction into formate/formic acid are reviewed, highlighting the different cell designs. Also, the effect of cell design and operating parameters on the electrochemical reduction process are discussed. The review aims to highlight recent developments in the CO2 electrochemical cell design for formate production and provide guidelines for future advancements. Challenges of large-scale production and research gaps are also provided. 2023 The Authors
    DOI/handle
    http://dx.doi.org/10.1016/j.seppur.2023.123811
    http://hdl.handle.net/10576/42809
    Collections
    • Chemistry & Earth Sciences [‎605‎ items ]
    • GPC Research [‎502‎ items ]

    entitlement


    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Video