A facile energy-efficient approach to prepare super oil-sorbent thin films
Author | Saleem, Junaid |
Author | Baig, Moghal Zubair Khalid |
Author | Luyt, Adriaan S. |
Author | Shakoor, Rana Abdul |
Author | Hafeez, Ahsan |
Author | Ahsan, Insharah |
Author | Prahdan, Snigdhendubala |
Author | Pasha, Mujahed |
Author | McKay, Gordon |
Available date | 2023-05-18T09:06:59Z |
Publication Date | 2023-05-01 |
Publication Name | Energy Reports |
Identifier | http://dx.doi.org/10.1016/j.egyr.2022.12.098 |
Citation | Saleem, J., Baig, M. Z. K., Luyt, A. S., Shakoor, R. A., Hafeez, A., Ahsan, I., ... & McKay, G. (2023). A facile energy-efficient approach to prepare super oil-sorbent thin films. Energy Reports, 9, 40-45. |
Abstract | Oil spills on water surface and shoreline have caused significant water pollution, and one of the ways to deal with them is to use oil sorbents. An effective sorbent provides high oil uptake and retention values, high selectivity, super-fast uptake kinetics, and sufficient mechanical strength to ensure practical application under different conditions. In this regard, synthetic sorbents made up of graphene, carbon nanotubes, and polymers in the form of aerogels, thin films, pads, and non-woven fibers have been widely explored. However, none of them addresses all the attributes of an ideal oil sorbent. Aerogels provide extremely high uptake values, but they are so light that it is difficult for the end user to handle them. On the other hand, thin films and non-woven fibers can quickly absorb oil but suffer from low uptake capacity with low retention values. Similarly, commercial oil sorbent pads have sufficient mechanical strength, but low uptake capacity compared to aerogels. Herein, we present a super oil sorbent with a porous structure using a facile energy-efficient approach. The as-prepared sorbent comprises a porous thin film with micropores and macro-cavities, resulting in super-fast uptake kinetics and a high oil uptake value of 85 g/g. Moreover, tensile test results confirm sorbent's effectiveness in spill response. Lastly, our unique design does not involve expensive hydrophobic functionalization and thus utilizes lower embodied energy and generates lower carbon footprints. |
Sponsor | This publication was made possible by NPRP grant number NPRP12S-0325-190443 from the Qatar National Research Fund (a member of the Qatar Foundation). |
Language | ar |
Publisher | Elsevier Ltd |
Subject | Oil spill Porous Saturation Selectivity Super sorbent Thin film |
Type | Article |
Pagination | 40-50 |
Volume Number | 9 |
Check access options
Files in this item
This item appears in the following Collection(s)
-
Center for Advanced Materials Research [1379 items ]