• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Computer Science & Engineering
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Computer Science & Engineering
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    FEDGAN-IDS: Privacy-preserving IDS using GAN and Federated Learning

    Thumbnail
    View/Open
    Publisher version (You have accessOpen AccessIcon)
    Publisher version (Check access options)
    Check access options
    1-s2.0-S0140366422002171-main.pdf (1.661Mb)
    Date
    2022-06-18
    Author
    Aliya, Tabassum
    Erbad, Aiman
    Lebda, Wadha
    Mohamed, Amr
    Guizani, Mohsen
    Metadata
    Show full item record
    Abstract
    Federated Learning (FL) is a promising distributed training model that aims to minimize the data sharing to enhance privacy and performance. FL requires sufficient and diverse training data to build efficient models. Lack of data balance as seen in rare classes affects the model accuracy. Generative Adversarial Networks (GAN) are remarkable in data augmentation to balance the available training data. In this article, we propose a novel Federated Deep Learning (DL) Intrusion Detection System (IDS) using GAN, named FEDGAN-IDS, to detect cyber threats in smart Internet of Things (IoT) systems; smarthomes, smart e-healthcare systems and smart cities. We distribute the GAN network over IoT devices to act as a classifier and train using augmented local data. We compare the convergence and accuracy of our model with other federated intrusion detection models. Extensive experiments with multiple datasets demonstrates the effectiveness of the proposed FEDGAN-IDS. The model performs better and converges earlier than the state-of-the-art standalone IDS.
    URI
    https://www.sciencedirect.com/science/article/pii/S0140366422002171
    DOI/handle
    http://dx.doi.org/10.1016/j.comcom.2022.06.015
    http://hdl.handle.net/10576/43122
    Collections
    • Computer Science & Engineering [‎2428‎ items ]

    entitlement


    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Video