Show simple item record

AuthorHussain, Ahmed
AuthorAbughanam, Nada
AuthorSciancalepore, Savio
AuthorYaacoub, Elias
AuthorMohamed, Amr
Available date2023-05-22T11:07:21Z
Publication Date2022-11-07
Publication NameACM International Conference Proceeding Series
Identifierhttp://dx.doi.org/10.1145/3567445.3567463
CitationHussain, A., Abughanam, N., Sciancalepore, S., Yaacoub, E., & Mohamed, A. (2022, November). Jammer Localization in the Internet of Vehicles: Scenarios, Experiments, and Evaluation. In Proceedings of the 12th International Conference on the Internet of Things (pp. 73-80).
ISBN978-145039665-3
URIhttps://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85146567524&origin=inward
URIhttp://hdl.handle.net/10576/43270
AbstractThe Internet of Vehicles (IoV) paradigm aims to improve road safety and provide a comfortable driving experience for Internet-connected vehicles, by transmitting early warning and infotainment signals to Internet-connected vehicles in the network. The unique characteristics of the IoV, such as their mobility and pervasive Internet connectivity, expose such networks to many cyberattacks. In particular, jamming attacks represent a considerable risk to their performance, as they can significantly affect vehicles’ functionality, possibly leading to collisions in dense networks. This paper presents a new scheme enabling the detection and localization of jamming attacks carried out within an IoV network. We consider several scenarios, e.g., where the Internet-connected vehicles and the jammer are statically positioned, as when parked on a street, moving in the same direction and with variable speeds, and moving in opposite directions. We leverage the physical-layer characteristics of the received signals, particularly the Received Signal Strength (RSS), and devise a solution minimizing the jammer localization error based on a set of antennas deployed on the vehicle. Specifically, we compute the power emitted by the jammer and received by the arrays of omnidirectional antennas and we use such values to estimate the location of the jammer in the previous-cited scenarios. Through an extensive simulation campaign, we provide a thorough study of our algorithm, evaluating the effect of several system and channel parameters on the measurement error. The results obtained for all scenarios show a significant localization accuracy, i.e., ranging from 0.23 meters to 13 meters, depending on the channel conditions.
SponsorThis publication was supported by Qatar University Graduate Assistantship.
Languageen
PublisherACM Digital Library
SubjectInternet of Vehicles
Jammer Localization
Jamming
Physical-Layer Security
Vehicular Communications
Wireless Communications
TitleJammer Localization in the Internet of Vehicles: Scenarios, Experiments, and Evaluation
TypeConference
Pagination73-80
dc.accessType Open Access


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record