عرض بسيط للتسجيلة

المؤلفYeganeh, Ali
المؤلفShadman, Alireza
المؤلفShongwe, Sandile Charles
المؤلفAbbasi, Saddam Akber
تاريخ الإتاحة2023-05-28T10:11:27Z
تاريخ النشر2023
اسم المنشورNeural Computing and Applications
المصدرScopus
معرّف المصادر الموحدhttp://dx.doi.org/10.1007/s00521-023-08257-x
معرّف المصادر الموحدhttp://hdl.handle.net/10576/43496
الملخصVarious applications of control charts in the field of health-care monitoring and surveillance can be found in the literature. As one of the major categories, monitoring binary outcomes of cardiac surgeries with the aim of logistic regression model for the patients' death probability has been extended by different researchers. For this aim, statistical control charts, such as cumulative sum (CUSUM) chart, are applied as a risk-adjusted method to monitoring patients' mortality rate. However, employing machine learning techniques such as artificial neural network (ANN) has not been paid attention. So, this paper proposes a novel ANN-based control chart with a heuristic training approach to monitor binary surgical outcomes by control charts. Performance of the proposed approach is investigated and compared with existing studies, based on the average run lengths (ARL) criterion and the results demonstrated a superior performance of the proposed approach. Nevertheless, to demonstrate the application of the proposed approach, some real-life applications are also provided in this paper. Furthermore, robustness of the proposed method is investigated by considering Beta distribution for the death rate in addition to the logistic model. 2023, The Author(s), under exclusive licence to Springer-Verlag London Ltd., part of Springer Nature.
اللغةen
الناشرSpringer Science and Business Media Deutschland GmbH
الموضوعArtificial neural network (ANN)
Evolutionary training
Particle swarm optimisation (PSO)
Risk-adjusted control chart
Statistical process control (SPC)
العنوانEmploying evolutionary artificial neural network in risk-adjusted monitoring of surgical performance
النوعArticle
الصفحات10677-10693
رقم العدد14
رقم المجلد35
dc.accessType Abstract Only


الملفات في هذه التسجيلة

الملفاتالحجمالصيغةالعرض

لا توجد ملفات لها صلة بهذه التسجيلة.

هذه التسجيلة تظهر في المجموعات التالية

عرض بسيط للتسجيلة