• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Civil and Environmental Engineering
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Civil and Environmental Engineering
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Bioinspired modeling and biogeography-based optimization of electrocoagulation parameters for enhanced heavy metal removal

    Thumbnail
    View/Open
    Publisher version (You have accessOpen AccessIcon)
    Publisher version (Check access options)
    Check access options
    Date
    2022
    Author
    Jain, Ananya
    Rai, Saumitra
    Srinivas, Rallapalli
    Al-Raoush, Riyadh I.
    Metadata
    Show full item record
    Abstract
    Electrocoagulation is an effective wastewater treatment process for the removal of heavy metals. This study focuses on deriving optimal conditions for removing heavy metals, viz. Lead (Pb), Cobalt (Co), and Manganese (Mn) from simulated wastewater by investigating removal efficiency and energy consumption of electrocoagulation process. Five operational parameters namely pH (2–10), current density (0.076–0.189 A/cm2), inter-electrode distance (3–7 cm), solution temperature (30–70 °C) and charging time (5–25 cm) have been analyzed. To improve the treatment of heavy metals, a novel coupled approach, namely Artificial neural network - non-dominated sorting Biogeography based optimization (ANN-NSBBO), has been proposed. Using the experimental data, a feed-forward backpropagation ANN model is used with removal efficiency and energy consumption as the outputs. Optimal values of operational parameters for maximum removal efficiency and minimum energy consumption were obtained using multi-objective NSBBO over the trained ANN model. True pareto fronts for Cobalt, Lead and Manganese were obtained after 100 iterations of the optimization algorithm. The maximum removal efficiency of 98.66% was obtained for Cobalt at the electrical energy consumption of 0.204 kWh. Minimum energy consumption for electrocoagulation of Lead (5.34 x 10−6 kWh) gave 82.48% removal efficiency. The maximum removal efficiency of Manganese (101.238%) was achieved at 7.64 pH, 0.084 A/cm2 current density, 3.188 cm inter-electrode distance, 47.49 °C solution temperature, 19.758 min charging time, and 0.145 kWh energy consumption. The non-dominated optimum tradeoff between removal efficiency and energy consumption provides clarity on operating conditions for the electrocoagulation process. The proposed approach of enhancing heavy metal treatment could assist municipalities, industries, and the scientific communities in achieving the United Nation's sustainable development goal of heavy metal remediation.
    DOI/handle
    http://dx.doi.org/10.1016/j.jclepro.2022.130622
    http://hdl.handle.net/10576/43854
    Collections
    • Civil and Environmental Engineering [‎869‎ items ]

    entitlement


    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Video