• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
  • Copyrights
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Chemical Engineering
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Chemical Engineering
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Enhanced treatment of petroleum refinery wastewater by short-term applied voltage in single chamber microbial fuel cell

    Thumbnail
    View/Open
    Publisher version (You have accessOpen AccessIcon)
    Publisher version (Check access options)
    Check access options
    Date
    2018
    Author
    Mohanakrishna, Gunda
    Abu-Reesh, Ibrahim M.
    Kondaveeti, Sanath
    Al-Raoush, Riyadh I.
    He, Zhen
    Metadata
    Show full item record
    Abstract
    Electrochemically active anodic biofilm that has adapted under mild applied potentials in the range 100-500 mV was evaluated for its improved bioelectrogenesis and bioelectrochemical treatment of petroleum refinery wastewater (PRW) in a single chamber air cathode microbial fuel cell (MFC). MFC operation with 500 mV as supplemental voltage has exhibited a maximum power density of 132 mW/m2, which was three times higher than control MFC (45 mW/m2). Similarly, highest substrate removal efficiency (48%) was also obtained with the MFC of 500 mV, followed by 300 mV (37%), 100 mV (32%) and control (27%). Adaptation under applied potential conditions also exhibited enhanced degradation efficiency of diesel range organics (DROs)/straight chain-alkanes. The strategy efficiently reduced DROs with the maximum efficiency of 89% (500 mV), which is almost 50% higher than that of the control system (59%), demonstrating the effectiveness of using supplemented voltage in treating PRW. 2018 Elsevier Ltd
    DOI/handle
    http://dx.doi.org/10.1016/j.biortech.2018.01.005
    http://hdl.handle.net/10576/43876
    Collections
    • Chemical Engineering [‎1272‎ items ]
    • Civil and Environmental Engineering [‎877‎ items ]

    entitlement


    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us
    Contact Us | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us
    Contact Us | QU

     

     

    Video