• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Arts & Sciences
  • Mathematics, Statistics & Physics
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Arts & Sciences
  • Mathematics, Statistics & Physics
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Computational Analysis for Bioconvection of Microorganisms in Prandtl Nanofluid Darcy-Forchheimer Flow across an Inclined Sheet

    Thumbnail
    View/Open
    nanomaterials-12-01791-v2.pdf (1.077Mb)
    Date
    2022
    Author
    Wang, Jianfeng
    Mustafa, Zead
    Siddique, Imran
    Ajmal, Muhammad
    Jaradat, Mohammed M. M.
    Rehman, Saif U.
    Ali, Bagh
    Ali, Hafiz M.
    ...show more authors ...show less authors
    Metadata
    Show full item record
    Abstract
    The two-dimensional boundary layer flow of a Prandtl nanofluid was explored in the presence of an aligned magnetic field over an inclined stretching/shrinking sheet in a non-Darcy permeable medium. To transform the PDEs of the leading equations into ODEs, a coupled boundary value problem was formed and suitable similarity functions were used. To obtain numerical answers, an efficient code for the Runge-Kutta technique with a shooting tool was constructed with a MATLAB script. This procedure is widely used for the solution of such problems as it is efficient and cost-effective with a fifth-order accuracy. The significance of immersed parameters on the velocity, temperature, concentration, and bioconvection is shown through figures. Furthermore, the physical parameters of the skin friction coefficient and the Nusselt numbers are demonstrated in tables. The declining behavior of the flow velocity against the porosity parameter Kp and the local inertia co-efficient Fr is shown, and the both parameters of the Darcy resistance and Darcy-Forchheimer resistance are responsible for slowing the fluid speed. The increasing values of the Schmidt number Sc decrease the concentration of the nano entities. 2022 by the authors. Licensee MDPI, Basel, Switzerland.
    DOI/handle
    http://dx.doi.org/10.3390/nano12111791
    http://hdl.handle.net/10576/44021
    Collections
    • Mathematics, Statistics & Physics [‎789‎ items ]

    entitlement


    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Video