Disaster related social media content processing for sustainable cities
المؤلف | Pradeep Kumar, Roy |
المؤلف | Kumar, Abhinav |
المؤلف | Singh, Jyoti Prakash |
المؤلف | Dwivedi, Yogesh Kumar |
المؤلف | Rana, Nripendra Pratap |
المؤلف | Raman, Ramakrishnan |
تاريخ الإتاحة | 2023-06-08T08:16:22Z |
تاريخ النشر | 2021-09-22 |
اسم المنشور | Sustainable Cities and Society |
المعرّف | http://dx.doi.org/10.1016/j.scs.2021.103363 |
الاقتباس | Roy, P. K., Kumar, A., Singh, J. P., Dwivedi, Y. K., Rana, N. P., & Raman, R. (2021). Disaster related social media content processing for sustainable cities. Sustainable Cities and Society, 75, 103363. |
الرقم المعياري الدولي للكتاب | 2210-6707 |
الملخص | The current study offers a hybrid convolutional neural networks (CNN) model that filters relevant posts and categorises them into several humanitarian classifications using both character and word embedding of textual content. The distinct embeddings for words and characters are used as input to the CNN model’s various channels. A hurricane, flood, and wildfire dataset are used to validate the proposed model. The model performed similarly across all datasets, with the F1-score ranging from 0.66 to 0.71. Because it uses existing social media posts and may be used as a layer with any social media, the model provides a sustainable solution for disaster analysis. With domain-specific training, the suggested approach can be used to locate useful information in other domains such as traffic accidents and civil unrest also. |
اللغة | en |
الناشر | Elsevier |
الموضوع | Disaster Deep learning CNN Word embedding Character embedding |
النوع | Article |
رقم المجلد | 75 |
ESSN | 2210-6715 |
تحقق من خيارات الوصول
الملفات في هذه التسجيلة
الملفات | الحجم | الصيغة | العرض |
---|---|---|---|
لا توجد ملفات لها صلة بهذه التسجيلة. |
هذه التسجيلة تظهر في المجموعات التالية
-
الإدارة والتسويق [730 items ]