• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Research Units
  • Gas Processing Center
  • GPC Research
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Research Units
  • Gas Processing Center
  • GPC Research
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    An Eco-Friendly Quaternary Ammonium Salt as a Corrosion Inhibitor for Carbon Steel in 5 M HCl Solution: Theoretical and Experimental Investigation

    Thumbnail
    View/Open
    molecules-27-06414-v2.pdf (4.369Mb)
    Date
    2022
    Author
    Jalab, Rem
    Saad, Mohammed A.
    Sliem, Mostafa H.
    Abdullah, Aboubakr M.
    Hussein, Ibnelwaleed A.
    Metadata
    Show full item record
    Abstract
    The corrosion of industrial material is a costly problem associated with global economic losses reaching trillions of US dollars in the repair of failures. Injecting corrosion inhibitors is the most practically promising method for decelerating corrosion reactions and protecting surfaces. Recent investigations have focused on surfactants as corrosion inhibitors due to their amphiphilic nature, low cost, and simple chemical preparation procedures. This study aims to investigate the performance of an environment-friendly Quaternium-22 (Q-22) surfactant which is widely used in cosmetics for C-steel corrosion inhibition in a 5 M HCl medium. Weight loss experiments were performed at different concentrations and immersion times, presenting a maximum efficiency at 2.22 mmol·L−1. The influence of Q-22 on the corrosion behavior of C-steel was elucidated using non-destructive electrochemical measurements. The overall results revealed that adding varied concentrations of Q-22 significantly decreases the corrosion rate of C-steel. The results revealed the physisorption nature of Q-22 onto the C-steel surface, with adsorption following the Freundlich isotherm (∆Hads = −16.40 kJ·mol−1). The relative inhibition performance of Q-22 was also evaluated by SEM and AFM analyses. Lastly, quantum chemical calculations based on density functional theory (DFT) demonstrated that Q-22 has promising molecular features concerning the anticorrosive mechanism.
    DOI/handle
    http://dx.doi.org/10.3390/molecules27196414
    http://hdl.handle.net/10576/45399
    Collections
    • Center for Advanced Materials Research [‎1485‎ items ]
    • Chemical Engineering [‎1196‎ items ]
    • GPC Research [‎502‎ items ]

    entitlement


    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Video