• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Arts & Sciences
  • Biological & Environmental Sciences
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Arts & Sciences
  • Biological & Environmental Sciences
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    The recovery of strontium ions from seawater reverse osmosis brine using novel composite materials of ferrocyanides modified roasted date pits

    Thumbnail
    View/Open
    Publisher version (You have accessOpen AccessIcon)
    Publisher version (Check access options)
    Check access options
    Date
    2023
    Author
    Al-Absi, Rana S.
    Khan, Mariam
    Abu-Dieyeh, Mohammed H.
    Ben-Hamadou, Radhouane
    Nasser, Mustafa S.
    Al-Ghouti, Mohammad A.
    ...show more authors ...show less authors
    Metadata
    Show full item record
    Abstract
    In this study, three types of adsorbents were used to remove and recover strontium ions (Sr2+) from aqueous and brine solution of seawater reverse osmosis (SWRO), namely roasted date pits (RDP) and RDP modified using copper and nickel salts of potassium hexacyanoferrates to obtain RDP–FC–Cu, and RDP–FC–Ni, respectively. Additionally, the influence of various parameters, including pH, temperature, initial concentration, and co-existing ions was also evaluated. The results revealed that pH 10 was the optimum pH in which the maximum Sr2+ ions were adsorbed. Additionally, all adsorbents had a high adsorption capacity (99.9 mg/g) for removing Sr2+ ions at the highest concentration (100 mg/L) and a temperature of 45 °C was found to be the optimum temperature. A scanning electron microscopy for the adsorbents before and after the adsorption of strontium showed the remarkable pore filling onto the active sites of all adsorbents. The thermodynamics parameter demonstrated that the adsorption occurred in an endothermic environment, and that, the reaction was spontaneous, and favorable at all the temperatures investigated. According to isotherm studies, the Langmuir model was the best-fit isotherm model; indicating that strontium adsorption involved the formation of monolayers and multilayers at higher temperatures (45 °C). Furthermore, high desorption percentages (above 90%) were achieved for all the adsorbents when an HCl concentration of 0.5 M was used. This showed the high reusability of the adsorbents. Lastly, the adsorption of strontium from the SWRO brine containing a number of metal ions was extremely sufficient as all the adsorbents were efficient to adsorb a high amount of Sr2+ despite the presence of other competing ions.
    DOI/handle
    http://dx.doi.org/10.1016/j.chemosphere.2022.137043
    http://hdl.handle.net/10576/45420
    Collections
    • Biological & Environmental Sciences [‎931‎ items ]
    • GPC Research [‎502‎ items ]

    entitlement


    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Video