Explainable, trustworthy, and ethical machine learning for healthcare: A survey
View/ Open
Publisher version (Check access options)
Check access options
Date
2022Author
Rasheed, KhansaQayyum, Adnan
Ghaly, Mohammed
Al-Fuqaha, Ala
Razi, Adeel
Qadir, Junaid
...show more authors ...show less authors
Metadata
Show full item recordAbstract
With the advent of machine learning (ML) and deep learning (DL) empowered applications for critical applications like healthcare, the questions about liability, trust, and interpretability of their outputs are raising. The black-box nature of various DL models is a roadblock to clinical utilization. Therefore, to gain the trust of clinicians and patients, we need to provide explanations about the decisions of models. With the promise of enhancing the trust and transparency of black-box models, researchers are in the phase of maturing the field of eXplainable ML (XML). In this paper, we provided a comprehensive review of explainable and interpretable ML techniques for various healthcare applications. Along with highlighting security, safety, and robustness challenges that hinder the trustworthiness of ML, we also discussed the ethical issues arising because of the use of ML/DL for healthcare. We also describe how explainable and trustworthy ML can resolve all these ethical problems. Finally, we elaborate on the limitations of existing approaches and highlight various open research problems that require further development. 2022 The Author(s)
Collections
- Computer Science & Engineering [2402 items ]