Challenges and Countermeasures for Adversarial Attacks on Deep Reinforcement Learning
Date
2022Author
Ilahi, InaamUsama, Muhammad
Qadir, Junaid
Janjua, Muhammad Umar
Al-Fuqaha, Ala
Hoang, Dinh Thai
Niyato, Dusit
...show more authors ...show less authors
Metadata
Show full item recordAbstract
Deep reinforcement learning (DRL) has numerous applications in the real world, thanks to its ability to achieve high performance in a range of environments with little manual oversight. Despite its great advantages, DRL is susceptible to adversarial attacks, which precludes its use in real-life critical systems and applications (e.g., smart grids, traffic controls, and autonomous vehicles) unless its vulnerabilities are addressed and mitigated. To address this problem, we provide a comprehensive survey that discusses emerging attacks on DRL-based systems and the potential countermeasures to defend against these attacks. We first review the fundamental background on DRL and present emerging adversarial attacks on machine learning techniques. We then investigate the vulnerabilities that an adversary can exploit to attack DRL along with state-of-the-art countermeasures to prevent such attacks. Finally, we highlight open issues and research challenges for developing solutions to deal with attacks on DRL-based intelligent systems. 2020 IEEE.
Collections
- Computer Science & Engineering [2402 items ]
Related items
Showing items related by title, author, creator and subject.
-
Machine Learning for Healthcare Wearable Devices: The Big Picture
Sabry, Farida; Eltaras, Tamer; Labda, Wadha; Alzoubi, Khawla; Malluhi, Qutaibah ( John Wiley and Sons Inc , 2022 , Article Review)Using artificial intelligence and machine learning techniques in healthcare applications has been actively researched over the last few years. It holds promising opportunities as it is used to track human activities and ... -
A cooperative Q-learning approach for distributed resource allocation in multi-user femtocell networks
Saad H.; Mohamed A.; El Batt T. ( Institute of Electrical and Electronics Engineers Inc. , 2016 , Conference Paper)This paper studies distributed interference management for femtocells that share the same frequency band with macrocells. We propose a multi-agent learning technique based on distributed Q-learning, called subcarrier-based ... -
A cooperative Q-learning approach for online power allocation in femtocell networks
Saad H.; Mohamed A.; Elbatt T. ( IEEE , 2013 , Conference Paper)In this paper, we address the problem of distributed interference management of cognitive femtocells that share the same frequency range with macrocells using distributed multiagent Q-learning. We formulate and solve three ...