عرض بسيط للتسجيلة

المؤلفAhsan, Muhammad Ahtazaz
المؤلفQayyum, Adnan
المؤلفRazi, Adeel
المؤلفQadir, Junaid
تاريخ الإتاحة2023-07-13T05:40:53Z
تاريخ النشر2022
اسم المنشورMedical and Biological Engineering and Computing
المصدرScopus
الرقم المعياري الدولي للكتاب1400118
معرّف المصادر الموحدhttp://dx.doi.org/10.1007/s11517-022-02633-w
معرّف المصادر الموحدhttp://hdl.handle.net/10576/45591
الملخصIn recent years, deep learning (DL) techniques have provided state-of-the-art performance in medical imaging. However, good quality (annotated) medical data is in general hard to find due to the usually high cost of medical images, limited availability of expert annotators (e.g., radiologists), and the amount of time required for annotation. In addition, DL is data-hungry and its training requires extensive computational resources. Furthermore, DL being a black-box method lacks transparency on its inner working and lacks fundamental understanding behind decisions made by the model and consequently, this notion enhances the uncertainty on its predictions. To this end, we address these challenges by proposing a hybrid model, which uses a Bayesian convolutional neural network (BCNN) for uncertainty quantification, and an active learning approach for annotating the unlabeled data. The BCNN is used as a feature descriptor and these features are then used for training a model, in an active learning setting. We evaluate the proposed framework for diabetic retinopathy classification problem and demonstrate state-of-the-art performance in terms of different metrics. Graphical abstract: [Figure not available: see fulltext.]. 2022, International Federation for Medical and Biological Engineering.
راعي المشروعAdeel Razi is affiliated with The Wellcome Centre for Human Neuroimaging supported by core funding from Wellcome (203147/Z/16/Z).
اللغةen
الناشرSpringer Science and Business Media Deutschland GmbH
الموضوعActive learning
Deep learning
Diabetic retinopathy
Uncertainty quantification
العنوانAn active learning method for diabetic retinopathy classification with uncertainty quantification
النوعArticle
الصفحات2797-2811
رقم العدد10
رقم المجلد60
dc.accessType Abstract Only


الملفات في هذه التسجيلة

الملفاتالحجمالصيغةالعرض

لا توجد ملفات لها صلة بهذه التسجيلة.

هذه التسجيلة تظهر في المجموعات التالية

عرض بسيط للتسجيلة