عرض بسيط للتسجيلة

المؤلفBisht, J.
المؤلفSharma, N.
المؤلفMishra, S.K.
المؤلفHamdi, A.
تاريخ الإتاحة2023-09-24T07:55:30Z
تاريخ النشر2023
اسم المنشورJournal of Inequalities and Applications
المصدرScopus
معرّف المصادر الموحدhttp://dx.doi.org/10.1186/s13660-023-02952-y
معرّف المصادر الموحدhttp://hdl.handle.net/10576/47861
الملخصIntegral inequalities with generalized convexity play an important role in both applied and theoretical mathematics. The theory of integral inequalities is currently one of the most rapidly developing areas of mathematics due to its wide range of applications. In this paper, we study the concept of higher-order strongly exponentially convex functions and establish a new Hermite-Hadamard inequality for the class of strongly exponentially convex functions of higher order. Further, we derive some new integral inequalities for Riemann-Liouville fractional integrals via higher-order strongly exponentially convex functions. These findings include several well-known results and newly obtained results as special cases. We believe that the results presented in this paper are novel and will be beneficial in encouraging future research in this field. 2023, The Author(s).
راعي المشروعThe first author is financially supported by the Ministry of Science and Technology, Department of Science and Technology, New Delhi, India, through Registration No. DST/INSPIRE Fellowship/[IF190355] and the third author is financially supported by "Research Grant for Faculty" (IoE Scheme) under Dev. Scheme NO. 6031 and Department of Science and Technology, SERB, New Delhi, India through grant no.: MTR/2018/000121.
اللغةen
الناشرInstitute for Ionics
الموضوعConvex functions
Exponentially convex functions
Hermite-Hadamard inequalities
Riemann-Liouville fractional integrals
العنوانSome new integral inequalities for higher-order strongly exponentially convex functions
النوعArticle
رقم العدد1
رقم المجلد2023
dc.accessType Abstract Only


الملفات في هذه التسجيلة

الملفاتالحجمالصيغةالعرض

لا توجد ملفات لها صلة بهذه التسجيلة.

هذه التسجيلة تظهر في المجموعات التالية

عرض بسيط للتسجيلة