Some new integral inequalities for higher-order strongly exponentially convex functions
المؤلف | Bisht, J. |
المؤلف | Sharma, N. |
المؤلف | Mishra, S.K. |
المؤلف | Hamdi, A. |
تاريخ الإتاحة | 2023-09-24T07:55:30Z |
تاريخ النشر | 2023 |
اسم المنشور | Journal of Inequalities and Applications |
المصدر | Scopus |
الملخص | Integral inequalities with generalized convexity play an important role in both applied and theoretical mathematics. The theory of integral inequalities is currently one of the most rapidly developing areas of mathematics due to its wide range of applications. In this paper, we study the concept of higher-order strongly exponentially convex functions and establish a new Hermite-Hadamard inequality for the class of strongly exponentially convex functions of higher order. Further, we derive some new integral inequalities for Riemann-Liouville fractional integrals via higher-order strongly exponentially convex functions. These findings include several well-known results and newly obtained results as special cases. We believe that the results presented in this paper are novel and will be beneficial in encouraging future research in this field. 2023, The Author(s). |
راعي المشروع | The first author is financially supported by the Ministry of Science and Technology, Department of Science and Technology, New Delhi, India, through Registration No. DST/INSPIRE Fellowship/[IF190355] and the third author is financially supported by "Research Grant for Faculty" (IoE Scheme) under Dev. Scheme NO. 6031 and Department of Science and Technology, SERB, New Delhi, India through grant no.: MTR/2018/000121. |
اللغة | en |
الناشر | Institute for Ionics |
الموضوع | Convex functions Exponentially convex functions Hermite-Hadamard inequalities Riemann-Liouville fractional integrals |
النوع | Article |
رقم العدد | 1 |
رقم المجلد | 2023 |
الملفات في هذه التسجيلة
الملفات | الحجم | الصيغة | العرض |
---|---|---|---|
لا توجد ملفات لها صلة بهذه التسجيلة. |
هذه التسجيلة تظهر في المجموعات التالية
-
الرياضيات والإحصاء والفيزياء [738 items ]