• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Electrical Engineering
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Electrical Engineering
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Improved Domain Adaptation Approach for Bearing Fault Diagnosis

    Thumbnail
    Date
    2022
    Author
    Ince, Turker
    Kilickaya, Sertac
    Eren, Levent
    Devecioglu, Ozer Can
    Kiranyaz, Serkan
    Gabbouj, Moncef
    ...show more authors ...show less authors
    Metadata
    Show full item record
    Abstract
    Application of domain adaptation techniques to predictive maintenance of modern electric rotating machinery (RM) has significant potential with the goal of transferring or adaptation of a fault diagnosis model developed for one machine to be generalized on new machines and/or new working conditions. The generalized nonlinear extension of conventional convolutional neural networks (CNNs), the self-organized operational neural networks (Self-ONNs) are known to enhance the learning capability of CNN by introducing non-linear neuron models and further heterogeneity in the network configuration. In this study, first the state-of-the-art 1D CNNs and Self-ONNs are tested for cross-domain performance. Then, we propose to utilize Self-ONNs as feature extractor in the well-known domain-adversarial neural networks (DANN) to enhance its domain adaptation performance. Experimental results over the benchmark Case Western Reserve University (CWRU) real vibration data set for bearing fault diagnosis across different load domains demonstrate the effectiveness and feasibility of the proposed domain adaptation approach with similar computational complexity.
    DOI/handle
    http://dx.doi.org/10.1109/IECON49645.2022.9968754
    http://hdl.handle.net/10576/47894
    Collections
    • Electrical Engineering [‎2821‎ items ]

    entitlement


    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Video