• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Mechanical & Industrial Engineering
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Mechanical & Industrial Engineering
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Crushing behavior of hybrid hexagonal/octagonal cellular composite system: Aramid/carbon hybrid composite

    Thumbnail
    View/Open
    Publisher version (You have accessOpen AccessIcon)
    Publisher version (Check access options)
    Check access options
    Date
    2014-11
    Author
    Mahdi, E.
    Sebaey, T.A.
    Metadata
    Show full item record
    Abstract
    In the current paper a series of experiments were conducted to assess the crashworthiness of cellular hexagonal/octagonal composite device. Each device composed of 6 cells of carbon fiber reinforced composite (CFRP). Different arrangements of the octagonal and the hexagonal cells were studied. All the configurations were filled with foam. The main objective of the current paper was to examine the effect of using the aramid/epoxy instead of the carbon/epoxy layers to pack the device. The specimens were tested under quasi-static compression loading up to complete crushing. The results showed that the packing material did not have a significant effect for the case of all hexagonal open cells. For the other configurations, introducing the aramid/epoxy instead of the carbon/epoxy showed improvements in the stroke efficiency, the crush load stability, the average crushing load, the energy absorbed and the specific energy absorption. In order to understand the mechanisms that led to this improvement, the packing material were examine after crushing using an optical microscope and a scanning electron microscope (SEM). For the carbon/epoxy, the images showed many failure mechanisms whereas, for the aramid/epoxy, only delamination was noted.
    URI
    http://www.sciencedirect.com/science/article/pii/S0261306914004506
    DOI/handle
    http://dx.doi.org/10.1016/j.matdes.2014.06.001
    http://hdl.handle.net/10576/4792
    Collections
    • Mechanical & Industrial Engineering [‎1461‎ items ]

    entitlement


    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Video