The impact of COVID-19 pandemic on electricity consumption and electricity demand forecasting accuracy: Empirical evidence from the state of Qatar
Author | Abulibdeh, Ammar |
Author | Zaidan, Esmat |
Author | Jabbar, Rateb |
Available date | 2023-09-25T10:24:30Z |
Publication Date | 2022-11-01 |
Publication Name | Energy Strategy Reviews |
Identifier | http://dx.doi.org/10.1016/j.esr.2022.100980 |
Citation | Abulibdeh, A., Zaidan, E., & Jabbar, R. (2022). The impact of COVID-19 pandemic on electricity consumption and electricity demand forecasting accuracy: Empirical evidence from the state of Qatar. Energy Strategy Reviews, 44, 100980. |
ISSN | 2211467X |
Abstract | The goal of this study is to use machine-learning (ML) techniques and empirical big data to examine the influence of the COVID-19 pandemic on electricity usage and electricity demand forecasting accuracy in buildings in Qatar over time and across sectors. Furthermore, this study statistically investigates the relationship between building electricity consumption and the number of daily infected cases in the State of Qatar. The effect of the pandemic on electricity usage was quantified during various periods of the pandemic years. Around 1 million electricity meter readings per year were considered for six different types of building usage between the years 2010 and 2021. The findings indicate that there was a gap between the actual and simulated electricity consumption during the pandemic years. Furthermore, the results show that the fluctuation in electricity consumption was correlated with the number of daily infected cases in some socioeconomic sectors. The changes in the pattern of electricity consumption during the pandemic years (2020–2021) affected the accuracy of the ML models in predicting electricity consumption in 2022. |
Sponsor | This publication was made possible by an NPRP award [ NPRP13S-0206-200272 ] from the Qatar National Research Fund (a member of Qatar Foundation). The statements made herein are solely the responsibility of the authors. The open access publication of this article was funded by the Qatar National Library (QNL) . |
Language | en |
Publisher | Elsevier Ltd |
Subject | COVID-19 Electricity consumption Machine learning Qatar Simulation |
Type | Article |
Volume Number | 44 |
Check access options
Files in this item
This item appears in the following Collection(s)
-
COVID-19 Research [838 items ]
-
Humanities [152 items ]