• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Mechanical & Industrial Engineering
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Mechanical & Industrial Engineering
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    An enhanced hybrid piezoelectric-electromagnetic energy harvester using dual-mass system for vortex-induced vibrations

    Thumbnail
    Date
    2021
    Author
    Muthalif, Asan G.A.
    Hafizh, Muhammad
    Renno, Jamil
    Paurobally, Mohammad R.
    Metadata
    Show full item record
    Abstract
    This article proposes a novel hybrid piezoelectric-electromagnetic vortex-induced vibration energy harvester from flow of water inside of a pipe. The piezoelectric energy harvester was modeled with a macro-fiber composite P2-type while the electromechanical transduction was modeled by an elastic magnet coupled to the bluff body movement. A dual-mass configuration was proposed to increase the energy harvesting efficiency. Theoretical models and the submerged natural frequencies of the hybrid energy harvesters were outlined. Computational fluid dynamics and finite element analysis with ANSYS were used to visualize the response in synchronization and output the voltage extracted from the harvesting mechanisms. The addition of a secondary system improves the amount of harvestable energy and outputs more energy than just a single system. This demonstrates the superiority of a dual-mass hybrid system. A tuned secondary beam was used for L-body configurations to make use of inline oscillations, and the secondary piezoelectric output improved for all configurations. Secondary beam tuning also improved the performance of the harvester by any amount between 21% and 52% when compared against a single-mass hybrid energy harvester. A comparative study showed that the L-vertical and vertical bluff-body-tuned was the best performing hybrid-PE energy harvester based on total voltage output.
    DOI/handle
    http://dx.doi.org/10.1177/10775463211041875
    http://hdl.handle.net/10576/50094
    Collections
    • Mechanical & Industrial Engineering [‎1499‎ items ]

    entitlement


    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Video