• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Arts & Sciences
  • Chemistry & Earth Sciences
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Arts & Sciences
  • Chemistry & Earth Sciences
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Construction of Bi2S3/TiO2/MoS2 S-Scheme Heterostructure with a Switchable Charge Migration Pathway for Selective CO2 Reduction

    No Thumbnail [120x130]
    Date
    2021
    Author
    Alkanad, Khaled
    Hezam, Abdo
    Drmosh, Qasem Ahmed
    Ganganakatte Chandrashekar, Sujay Shekar
    AlObaid, Abeer A.
    Warad, Ismail
    Bajiri, Mohammed Abdullah
    Neratur Krishnappagowda, Lokanath
    ...show more authors ...show less authors
    Metadata
    Show full item record
    Abstract
    Switching between the redox potential of an appropriate semiconductor heterostructure could show critical applications in selective CO2 reduction. Designing a semiconductor photocatalyst with a wavelength-dependent response is an effective strategy for regulating the direction of electron flow and tuning the redox potential. Herein, the switching mechanism between two charge migration pathways and redox potentials in a Bi2S3/TiO2/MoS2 heterostructure by regulating the light wavelength is achieved. In situ irradiated X-ray photoelectron spectroscopy (ISI-XPS), electron spin resonance (ESR), photoluminescence (PL), and experimental scavenger analyses prove that the charge transport follows the S-scheme approach under UV–vis–NIR irradiation and the heterojunction approach under vis–NIR irradiation, confirming the switchable feature of the Bi2S3/TiO2/MoS2 heterostructure. This switchable feature leads to the reduction of CO2 molecules to CH3OH and C2H5OH under UV–vis–NIR irradiation, while CH4 and CO are produced under Vis–NIR irradiation. Interestingly, the apparent quantum efficiency of the optimal composite at λ = 600 nm is 4.23%. This research work presents an opportunity to develop photocatalysts with switchable charge transport and selective CO2 reduction.
    DOI/handle
    http://dx.doi.org/10.1002/solr.202100501
    http://hdl.handle.net/10576/50107
    Collections
    • Chemistry & Earth Sciences [‎601‎ items ]

    entitlement


    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Video

    NoThumbnail