Parameter estimation through the weighted goal programming model
Abstract
Many models in economics, management and finance can be described in terms of nonlinear dynamical systems which usually depend on some unknown parameters. To conduct a long-run behaviour analysis of these models it is of paramount importance to establish efficient and accurate parameter estimation techniques. Today many sophisticated nonlinear model estimation, selection and testing approaches are available and reliable. However, when the nonlinear dynamical systems take the form of differential equations, many of them fail and it is required to use more advanced techniques. The aim of this paper is to present a weighted goal programming formulation for estimating the unknown parameters of dynamical models described in terms of differential equations. The method is illustrated through two different applications to population dynamics (Malthus model) and innovation diffusion (Bass model).
Collections
- Management & Marketing [742 items ]