• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Dental Medicine
  • Dental Medicine Research
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Dental Medicine
  • Dental Medicine Research
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Patient-reported outcomes and framework fit accuracy of removable partial dentures fabricated using digital techniques: A systematic review and meta-analysis

    Thumbnail
    View/Open
    Patient-reported outcomes and framework fit accuracy of removable partial dentures fabricated using digital techniques A systematic review and meta-analysis.pdf (967.8Kb)
    Date
    2023-01-01
    Author
    Almufleh, Balqees
    Arellanob, Alexia
    Tamimi, Faleh
    Metadata
    Show full item record
    Abstract
    Purpose: This review aimed to summarize the evidence on patient-reported outcomes and clinical performance of digitally fabricated removable partial dentures (RPDs) compared to traditionally fabricated dentures. Methods: Three databases were systematically searched (PubMed, CENTRAL, and Wiley online library) for clinical studies comparing digitally and conventionally fabricated RPDs regardless of data acquisition methods used for fabrication. The Cochrane Collaboration risk of bias assessment tool 2 and the Oxford Center for Evidence-based Medicine tool were used to assess risk of bias, and level of evidence, respectively. Descriptive narrative analysis was used to summarize data on patient-reported outcomes, as there were inadequate studies to pool data in a meta-analysis. A random-effects model was used to analyze the data of framework fit accuracy. Results: Ten randomized controlled trials were included in the systematic review, and 4 were included in the meta-analysis. Two studies showed that digitally fabricated RPDs are associated with higher patient satisfaction than conventionally fabricated RPDs (with a mean difference of 12.5 mm on a 100-satisfaction scale, p =.008). The pooled standardized mean difference for framework fit accuracy was 0.49 (p = 0.02) in favor of conventionally fabricated RPDs, which showed that conventionally fabricated RPDs have a quantitatively better fit compared to digitally fabricated RPDs. However, clinical evaluation studies showed that both frameworks have clinically acceptable fit. Conclusions: Current evidence shows that digitally fabricated RPDs are associated with higher patient satisfaction compared to conventionally fabricated RPDs. However, the scarcity of literature here warrants the generalization of this conclusion. Both digitally and conventionally fabricated metal RPD frameworks showed acceptable fit clinically.
    URI
    https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85177208844&origin=inward
    DOI/handle
    http://dx.doi.org/10.1111/jopr.13786
    http://hdl.handle.net/10576/50758
    Collections
    • Dental Medicine Research [‎407‎ items ]

    entitlement


    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Video